The influences of ozone dosage, pH and ionic strength on the formation of Assimilable Organic Carbon (AOC) during ozonation were investigated. The result demonstrated that within the range of 1-5 mg · L⁻¹ O₃, the formation of AOC increased with increasing ozone dosage, but higher ozone dosage (9 mg · L⁻¹) resulted in reduction of AOC formation. AOC formation increased with higher pH but decreased with increasing ionic strength. The result also showed that AOC formation with hydrophobic fraction (HPO) was the most, followed by transphilic fraction (TPI), and charged hydrophilic fraction (CHPI), while neutral hydrophilic fraction (NHPI) was the least. It was found that AOC formation related closely with SUVA of small molecular weight organics, and the lower SUVA produced more AOC.

Download full-text PDF

Source

Publication Analysis

Top Keywords

aoc formation
20
ozone dosage
12
assimilable organic
8
organic carbon
8
aoc
8
carbon aoc
8
ionic strength
8
formation aoc
8
hydrophilic fraction
8
formation
7

Similar Publications

Heat-stress-induced oxidative and inflammatory responses were important factors contributing to chicken intestinal damage. The purpose of this study was based on the antioxidant and anti-inflammatory activities of Physalis Calyx seu Fructus (Jin Deng Long, JDL) to investigate its efficacy and mechanism in relieving chicken heat stress damage. Primary chicken embryo duodenum cells and 90 30-day-old specific-pathogen-free chicken were randomly divided into control and JDL groups to establish heat stress models and .

View Article and Find Full Text PDF

This study was aim to investigate the effects of lipoic acid (ALA) on performance, meat quality, serum biochemistry and antioxidant function of broilers under heat stress (HS). Two hundred1-day-old Cobb broilers were randomly divided into four treatment groups and each treatment consisted of 4 replicates of 10 broilers each. The treatment group adopts a 2 × 2 two-factor setting, which is divided into two diets (basic diet or 250 mg/kg ALA diet) and two temperatures (24 ± 1℃ or 33 ± 1℃).

View Article and Find Full Text PDF

Polysaccharide Modulates Characteristic Bacteria and Metabolites, Improving the Immune Function of Healthy Mice.

Nutrients

January 2025

State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.

Objectives: Polysaccharides from are known to have several bioactive effects. Previous studies have found that low-molecular-weight polysaccharide (GP1) is degraded by and promotes the production of beneficial bacteria and metabolites, which improves immune disorder and intestinal injury, and then enhances the body's immune regulation ability. However, the immune regulation effect of GP1 on a healthy body has not been studied.

View Article and Find Full Text PDF

Objectives: To investigate the role of the BNIP3-PI3K/Akt signaling pathway in mediating the inhibitory effect of Decoction (BYHWT) on mitochondrial autophagy in human synovial fibroblasts from rheumatoid arthritis patients (FLS-RA) cultured under a hypoxic condition.

Methods: Forty normal Wistar rats were randomized into two groups (=20) for daily gavage of BYHWT or distilled water for 7 days to prepare BYHWT-medicated or control sera. FLS-RA were cultured in routine condition or exposed to hypoxia (10% O) for 24 h wigh subsequent treatment with IL-1β, followed by treatment with diluted BYHWT-medicated serum (5%, 10% and 20%) or control serum.

View Article and Find Full Text PDF

Introduction: Copper is an essential trace element crucial for enzyme synthesis and metabolism. Adequate copper levels are beneficial for maintaining the normal immune function of the spleen. Copper deficiency disrupts the metabolic processes within the spleen and impairs its immune function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!