Collective atomic excitation can be realized by the Raman scattering. Such a photon-atom interface can form an SU(1,1)-typed atom-light hybrid interferometer, where the atomic Raman amplification processes take the place of the beam splitting elements in a traditional Mach-Zehnder interferometer. We numerically calculate the phase sensitivities and the signal-to-noise ratios (SNRs) of this interferometer with the method of homodyne detection and intensity detection, and give their differences of the optimal phase points to realize the best phase sensitivities and the maximal SNRs from these two detection methods. The difference of the effects of loss of light field and atomic decoherence on measure precision is analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.017766 | DOI Listing |
The SU (1,1)-type atom-light hybrid interferometer (SALHI) is a kind of interferometer that is sensitive to both the optical phase and atomic phase. However, the loss has been an unavoidable problem in practical applications and greatly limits the use of interferometers. Visibility is an important parameter to evaluate the performance of interferometers.
View Article and Find Full Text PDFPhys Rev Lett
February 2022
Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China.
Essential for building quantum networks over remote independent nodes, the indistinguishability of photons has been extensively studied by observing the coincidence dip in the Hong-Ou-Mandel interferometer. However, indistinguishability is not limited to the same type of bosons. For the first time, we hereby observe quantum interference between flying photons and a single quantum of stored atomic coherence (magnon) in an atom-light beam splitter interface.
View Article and Find Full Text PDFLights carrying orbital angular momentum (OAM) have potential applications in precise rotation measurement, especially in remote sensing. Interferometers, especially nonlinear quantum interferometers, have also been proven to greatly improve the measurement accuracy in quantum metrology. By combining these two techniques, we theoretically propose a new atom-light hybrid Sagnac interferometer with OAM lights to advance the precision of the rotation measurement.
View Article and Find Full Text PDFThe atom-light hybrid interferometer recently attracted much attention in the research of precision metrology for its combination of light and atomic spin wave. With the AC Stark effect and proper design, it can be applied in the scheme of quantum non-demolition (QND) measurement of photon numbers. In this work, we apply the QND criteria to the scheme and theoretically derive its explicit formulas with various losses of the atomic-light hybrid interferometer.
View Article and Find Full Text PDFPhys Rev Lett
February 2018
Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland.
We observe effects of collective atomic motion in a one-dimensional optical lattice coupled to an optomechanical system. In this hybrid atom-optomechanical system, the lattice light generates a coupling between the lattice atoms as well as between atoms and a micromechanical membrane oscillator. For large atom numbers we observe an instability in the coupled system, resulting in large-amplitude atom-membrane oscillations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!