AI Article Synopsis

  • The study examines laser damage mechanisms in two conductive wide-bandgap semiconductor films: indium tin oxide (ITO) and silicon doped GaN (Si:GaN).
  • The experiments utilized various analytical techniques and revealed that ITO experienced thermal degradation while Si:GaN showed localized eruptions at interfaces when exposed to nanosecond laser pulses.
  • The findings suggest that damage in ITO is linked to free carrier absorption, whereas carbon complexes may play a role in the damage process of Si:GaN.

Article Abstract

Laser damage mechanisms of two conductive wide-bandgap semiconductor films - indium tin oxide (ITO) and silicon doped GaN (Si:GaN) were studied via microscopy, spectroscopy, photoluminescence (PL), and elemental analysis. Nanosecond laser pulse exposures with a laser photon energy (1.03 eV, 1064 nm) smaller than the conductive films bandgaps were applied and radically different film damage morphologies were produced. The laser damaged ITO film exhibited deterministic features of thermal degradation. In contrast, laser damage in the Si:GaN film resulted in highly localized eruptions originating at interfaces. For ITO, thermally driven damage was related to free carrier absorption and, for GaN, carbon complexes were proposed as potential damage precursors or markers.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.017616DOI Listing

Publication Analysis

Top Keywords

laser damage
12
damage mechanisms
8
mechanisms conductive
8
semiconductor films
8
laser
6
damage
5
conductive widegap
4
widegap semiconductor
4
films laser
4
conductive wide-bandgap
4

Similar Publications

Objectives: This work highlights the methods used to develop a multi-pulse 1726 nm laser system combined with bulk air-cooling for selective sebaceous gland (SG) photothermolysis using thermal imaging and software algorithms. This approach enables treating to a desired tissue temperature and depth to provide a safe, effective, reproducible, and durable treatment of acne.

Methods: We designed and built a 1726 nm laser system with a 40 W maximum power output, a highly controlled air-cooling device, and a thermal camera in the handpiece, which permits real-time temperature monitoring of the epidermis.

View Article and Find Full Text PDF

Purpose: To evaluate an alternative surgical approach for Port Delivery System with ranibizumab (PDS) implant and a novel application of Iridex laser system in Gottingen minipig model.

Methods: A total of seventeen male minipigs (Part 1: 9 animals in non-recovery and Part 2: 8 animals observed for 8-days post-surgery Part 2) received PDS implant insertion into each eye. The effect of Iridex 810 nm infrared diode laser with varying energy (power or duration) on transscleral pars plana ablation, surrounding ocular tissue and postsurgical vitreous hemorrhage (VH) was investigated.

View Article and Find Full Text PDF

Recently, implantable devices for treating peripheral nerve disorders have demonstrated significant potential as neuroprosthetics for diagnostics and electrical stimulation. However, the mechanical mismatch between these devices and nerves frequently results in tissue damage and performance degradation. Although advances are made in stretchable electrodes, challenges, including complex patterning techniques and unstable performance, persist.

View Article and Find Full Text PDF

Activatable multifunctional nanoparticles present considerable advantages in cancer treatment by integrating both diagnostic and therapeutic functionalities into a single platform. These nanoparticles can be precisely engineered to selectively target cancer cells, thereby reducing the risk of damage to healthy tissues. Once localized at the target site, they can be activated by external stimuli such as light, pH changes, or specific enzymes, enabling precise control over the release of therapeutic agents or the initiation of therapeutic effects.

View Article and Find Full Text PDF

Cyanide often forms as a byproduct during the fermentation process of distilled spirits, and excessive amounts can cause damage to health. Cyanide poisoning is also common in alcoholic beverages and water. Therefore, the cyanide content measurement in water and distilled spirits is essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!