Emerging evidence has indicated that vascular endothelial cells (ECs) not only form the barrier between blood and the vessel wall but also serve as conditional innate immune cells. Our previous study found that SIRT1, a class III histone deacetylase, inhibits the inflammatory response in ECs. Recent studies revealed that SIRT1 also participates in the modulation of immune responses. Although the NLRP3 inflammasome is known to be a crucial component of the innate immune system, there is no direct evidence demonstrating the anti-inflammatory effect of SIRT1 on ECs through the NLRP3 inflammasome. In this study, we observed that lipopolysaccharide (LPS) and adenosine triphosphate (ATP) triggered the activation of NLRP3 inflammasome in human umbilical vein ECs (HUVECs). Moreover, SIRT1 expression was reduced in HUVECs stimulated with LPS and ATP. SIRT1 activator inhibited the expression of monocyte chemotactic protein-1 (MCP-1) and C-reactive protein (CRP), whereas SIRT1 knockdown resulted in significant increases in MCP-1 and CRP levels in HUVECs stimulated with LPS and ATP. Importantly, the lack of SIRT1 enhanced NLRP3 inflammasome activation and subsequent caspase-1 cleavage. On the other hand, NLRP3 siRNA blocked the activation of the NLRP3 inflammasome in HUVECs stimulated with LPS plus ATP. Further study revealed that NLRP3 inflammasome blockade significantly reduced MCP-1 and CRP production in HUVECs. In vivo studies indicated that implantation of the periarterial carotid collar inhibited arterial SIRT1 expression in rabbits. Meanwhile, treatment with a SIRT1 activator decreased the expression levels of MCP-1 and CRP in collared arteries and the interleukin (IL)-1β level in serum. Taken together, these findings indicate that NLRP3 inflammasome activation promoted endothelial inflammation and that SIRT1 inhibits the inflammatory response partly through regulation of the NLRP3 inflammasome in ECs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2016.07.018 | DOI Listing |
Biochim Biophys Acta Mol Basis Dis
December 2024
Department of Pathology, School of Medicine, Nankai University, Tianjin, China. Electronic address:
The role of ER stress in the pathogenesis of diabetic kidney diseases (DKD) remains unclear. We employed bioinformatics to identify the UPR pathway activation, inflammation, and programmed cell death patterns in diabetic tubules. Levels of IRE1α/sXBP1 signaling, NLRP3 inflammasome activity and pyroptosis in tubular cells under high glucose conditions were measured.
View Article and Find Full Text PDFBehav Brain Res
December 2024
Center of Health Sciences, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil. Electronic address:
Bioorg Med Chem
December 2024
Tsukuba Research Center, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
NLRP3 inflammasome inhibitor is a highly attractive drug target for the treatment of various inflammatory diseases. Here, we report the discovery of pyridazine derivatives as a new class of scaffold for NLRP3 inflammasome inhibitors. We optimized HTS hit 2a to improve both in vitro IL-1β inhibitory activity and the mean photo effect (MPE) value in the in vitro 3T3 neutral red uptake (NRU) phototoxicity test.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, PR China. Electronic address:
The aim of this study was to evaluate for the effects of forsythiaside A (FA) on myocardial injury in streptozotocin (STZ)-induced diabetes mice. Blood glucose (BG), serum triglycerides (TG), lactate dehydrogenase (LDH), creatine kinase isoenzyme (CK-MB), cardiac troponin (cTnI), malondialdehyde (MDA), superoxide dismutase (SOD) levels were detected in STZ mice. The structure and function of heart was observed via cardiac ultrasound.
View Article and Find Full Text PDFSci Adv
January 2025
School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
The NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in human acute and chronic liver diseases. However, the role and cell-specific contribution of NLRP3 in liver regeneration remains unclear. Here, we found that NLRP3 was highly activated during the early stage of liver regeneration via 70% partial hepatectomy (PHx) mice model and clinical data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!