Spatial integration of E-cadherin adhesion, signalling and the epithelial cytoskeleton.

Curr Opin Cell Biol

Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, SW7 2AZ London, UK. Electronic address:

Published: October 2016

The characteristic tall and elongated shape of epithelial cells requires specialized adhesive structures and a distinct organization of cytoskeletal filaments. Cytoskeletal networks coordinate a precise organization of adhesive and signalling complexes along cell-cell contacts and enable exquisite strong cohesion among epithelial cells. E-cadherin, a calcium-dependent adhesion receptor, is an essential adhesive system in epithelia and its dynamic regulation and pathways that stabilize cell-cell adhesion have been extensively studied. This review highlights the less understood mechanisms underlying how cadherin receptor signalling drives cytoskeletal rearrangements which ultimately define the epithelial cell shape. In the past two years, new insights identify specific actin-binding proteins and regulators of the epithelial cytoskeleton as a framework to support junction dynamics, plasticity and maintenance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ceb.2016.07.006DOI Listing

Publication Analysis

Top Keywords

epithelial cytoskeleton
8
epithelial cells
8
epithelial
5
spatial integration
4
integration e-cadherin
4
e-cadherin adhesion
4
adhesion signalling
4
signalling epithelial
4
cytoskeleton characteristic
4
characteristic tall
4

Similar Publications

The epithelial-to-mesenchymal transition (EMT) is a common feature in early cancer invasion. Increased vimentin is a canonical marker of the EMT; however, the role of vimentin in EMT remains unknown. To clarify this, we induced EMT in lung cancer cells with TGF-β1, followed by treatment with the vimentin-targeting drug ALD-R491, live-cell imaging, and quantitative proteomics.

View Article and Find Full Text PDF

An antagonistic role of clock genes and lima1 in kidney regeneration.

Commun Biol

January 2025

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China.

The circadian clock genes are known important for kidney development, maturation and physiological functions. However, whether and how they play a role in renal regeneration remain elusive. Here, by using the single cell RNA-sequencing (scRNA-seq) technology, we investigated the dynamic gene expression profiles and cell states after acute kidney injury (AKI) by gentamicin treatment in zebrafish.

View Article and Find Full Text PDF

CAMSAP2 is required for bridging fiber assembly to ensure mitotic spindle assembly and chromosome segregation in human epithelial Caco-2 cells.

PLoS One

January 2025

Department of Life Science and Medical Bioscience, Laboratory of Cytoskeletal Logistics, Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.

In mammalian epithelial cells, cytoplasmic microtubules are mainly non-centrosomal, through the functions of the minus-end binding proteins CAMSAP2 and CAMSAP3. When cells enter mitosis, cytoplasmic microtubules are reorganized into the spindle composed of both centrosomal and non-centrosomal microtubules. The function of the CAMSAP proteins upon spindle assembly remains unknown, as these do not exhibit evident localization to spindle microtubules.

View Article and Find Full Text PDF

Cyclin D3 (CCND3), a member of the cyclin D family, is known to promote cell cycle transition. In this study, we found that CCND3 was downregulated in cisplatin-resistant (-diamminedichloroplatinum, DDP) lung adenocarcinoma (LUAD) cells. The loss of CCND3 indeed impeded cell cycle transition.

View Article and Find Full Text PDF

Endocytosis of Wnt ligands from surrounding epithelial cells positions microtubule nucleation sites at dendrite branch points.

PLoS Biol

January 2025

Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America.

Microtubule nucleation is important for microtubule organization in dendrites and for neuronal injury responses. The core nucleation protein, γTubulin (γTub), is localized to dendrite branch points in Drosophila sensory neurons by Wnt receptors and scaffolding proteins on endosomes. However, whether Wnt ligands are important is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!