Introduction: The caries process has been thought to be irreversible, resulting in the permanent loss of tooth substance and eventually the development of a cavity. Recent approaches focused on application of remineralizing agents to incipient carious lesions, aim at controlling demineralization and promoting remineralization. Remineralizing agents create a supersaturated environment around the lesion; thus, preventing mineral loss and forces calcium and phosphate ions in the vacant areas.
Aim: To compare and evaluate the remineralization potential of Fluoride Varnish, CPP-ACP Paste (Casein Phosphopeptide-Amorphous Calcium Phosphate) and fTCP Paste (functionalized Tricalcium Phosphate) using confocal microscope.
Materials And Methods: Two windows of 3X3mm were created on the labial cervical and incisal thirds in 60 permanent maxillary central incisors. The teeth were demineralized to create artificial caries and divided into three groups of 20 each. Group I specimens were coated with Fluoride Varnish once whereas those in CPP-ACP paste group and fTCP group were brushed for 2 minutes, twice daily for 20 and 40 days. The specimens were stored in artificial saliva during the study period and were later sectioned and observed under confocal microscope. Data obtained was statistically analyzed using Fischer's exact test, ANOVA and post-hoc Bonferroni's test.
Results: Fluoride Varnish, CPP-ACP Paste and fTCP Paste showed remineralization of artificial carious lesions at both the time intervals. Fluoride varnish showed the highest remineralization followed by CPP-ACP Paste and fTCP Paste. A statistically significant increase in remineralization potential of CPP-ACP Paste and fTCP Paste was observed at the end of 40 days as compared to 20 days.
Conclusion: Fluoride varnish showed the greatest remineralization potential of artificial carious lesions followed by CPP-ACP Paste and fTCP Paste respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4963768 | PMC |
http://dx.doi.org/10.7860/JCDR/2016/18191.7984 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!