The aim of this study is to establish the safe and effective ocular delivery system of therapeutic small interfering RNA (siRNA) in corneal neovascularization therapy. The major hurdle present in siRNA-based corneal neovascularization (CNV) therapy is severe cytotoxicity caused by repetitive drug treatment. A reducible branched polyethylenimine (rBPEI)-based nanoparticle (NP) system is utilized as a new siRNA carrier as a hope for CNV therapy. The thiolated BPEI is readily self-crosslinked in mild conditions to make high molecular weight rBPEI thus allowing the creation of stable siRNA/rBPEI nanoparticles (siRNA-rBPEI-NPs). In the therapeutic region, the rBPEI polymeric matrix is effectively degraded into nontoxic LMW BPEI inside the reductive cytosol causing the rapid release of the encapsulated siRNA into the cytosol to carry out its function. The fluorescent-labeled siRNA-rBPEI-NPs can release siRNA into the entire corneal region after subconjuctival injection into the eye of Sprague Dawley rats thus confirming the proof of concept of this system.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mabi.201600051DOI Listing

Publication Analysis

Top Keywords

corneal neovascularization
12
neovascularization therapy
8
cnv therapy
8
sirna
5
reducible polyethylenimine
4
polyethylenimine nanoparticles
4
nanoparticles efficient
4
efficient sirna
4
sirna delivery
4
corneal
4

Similar Publications

Neovascular glaucoma is a rare and serious condition typically associated with advanced ocular or systemic vascular diseases such as central retinal vein occlusion or diabetic retinopathy. This report describes a unique case of neovascular glaucoma presenting for the first time as an initial symptom of bilateral occlusive retinal vasculitis (ORV) in a generally healthy 4-year-old girl. The patient presented with symptoms of pain and redness in the left eye, accompanied by high intraocular pressure.

View Article and Find Full Text PDF

Purpose: This study aims to conduct a mini review of published literature concerning the role of exosomes in the field of ophthalmology, with a specific focus on Age-Related Macular Degeneration (AMD).

Methods: In this study, a comprehensive search was conducted using PubMed and Google Scholar to identify relevant publications. Additionally, trials submitted to clinicaltrials.

View Article and Find Full Text PDF

Background: The study aimed to review the etiology of corneal blindness and investigate the relative risk of corneal graft rejection (CGR) in the southern Liaoning region.

Methods: The clinical records of 359 patients (394 eyes) who underwent corneal transplantation at the Department of Keratoconus of the Third People's Hospital of Dalian from January 2019 to December 2023 were retrospectively analyzed. The data included patients' age, gender, occupation, diagnosis, surgical procedure, postoperative immune rejection, and neovascularization.

View Article and Find Full Text PDF

Corneal neovascularization (CorNV) develops under various pathological conditions and is one of the main causes of blindness. Due to that CorNV progression involves multiple steps, anti-vascular endothelial growth factor (VEGF) drugs alone could not sufficiently suppress this process, highlighting an urgent need for an efficient delivery system for the multi-step management of CorNV. In this study, a neutrophil nanovesicle-based eye drop (NCCR) is developed for CorNV therapy that simultaneously inhibits angiogenesis and inflammation, while eliminating pathological cells through chemoexcited photodynamic therapy (PDT).

View Article and Find Full Text PDF

Purpose: To evaluate the effect of subconjunctival injection of dexpanthenol on corneal neovascularization and inflammation in rats with induced chemical burns.

Methods: This experimental study included 40 female albino Wistar rats. Chemical burns were induced in the right eye of all rats on the first day, and the left eye was used as a control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!