A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Towards natural language question generation for the validation of ontologies and mappings. | LitMetric

Background: The increasing number of open-access ontologies and their key role in several applications such as decision-support systems highlight the importance of their validation. Human expertise is crucial for the validation of ontologies from a domain point-of-view. However, the growing number of ontologies and their fast evolution over time make manual validation challenging.

Methods: We propose a novel semi-automatic approach based on the generation of natural language (NL) questions to support the validation of ontologies and their evolution. The proposed approach includes the automatic generation, factorization and ordering of NL questions from medical ontologies. The final validation and correction is performed by submitting these questions to domain experts and automatically analyzing their feedback. We also propose a second approach for the validation of mappings impacted by ontology changes. The method exploits the context of the changes to propose correction alternatives presented as Multiple Choice Questions.

Results: This research provides a question optimization strategy to maximize the validation of ontology entities with a reduced number of questions. We evaluate our approach for the validation of three medical ontologies. We also evaluate the feasibility and efficiency of our mappings validation approach in the context of ontology evolution. These experiments are performed with different versions of SNOMED-CT and ICD9.

Conclusions: The obtained experimental results suggest the feasibility and adequacy of our approach to support the validation of interconnected and evolving ontologies. Results also suggest that taking into account RDFS and OWL entailment helps reducing the number of questions and validation time. The application of our approach to validate mapping evolution also shows the difficulty of adapting mapping evolution over time and highlights the importance of semi-automatic validation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4976517PMC
http://dx.doi.org/10.1186/s13326-016-0089-6DOI Listing

Publication Analysis

Top Keywords

validation
13
validation ontologies
12
natural language
8
ontologies
8
evolution time
8
support validation
8
medical ontologies
8
approach validation
8
number questions
8
mapping evolution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!