Magnesium-Calcite Crystal Formation Mediated by the Thermophilic Bacterium Geobacillus thermoglucosidasius Requires Calcium and Endospores.

Curr Microbiol

Department of Biochemistry and Applied Biosciences, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki, 889-2192, Japan.

Published: November 2016

Fresh Geobacillus thermoglucosidasius cells grown on soybean-casein digest nutrient agar were inoculated as a parent colony 1 cm in diameter on the surface of an agar gel containing acetate and calcium ions (calcite-promoting hydrogel) and incubated at 60 °C for 4 days, after which magnesium-calcite single crystals of 50-130 µm in size formed within the parent colony. Addition of EDTA, polyacrylic acid or N,N-dicyclohexylcarbodiimide to the calcite-forming hydrogel inhibited the parent colony from forming magnesium-calcite crystals. Inoculation of G. thermoglucosidasius on calcite-forming hydrogel containing 5 µM cadmium and 20 µM zinc resulted in a decrease in the sporulation rate from 55 to 7-8 %. Magnesium-calcite synthesis decreased relative to the sporulation rate. G. thermoglucosidasius exhibited higher adsorption/absorbance of calcium than other Geobacillus sp. that do not mediate calcite formation and higher levels of magnesium accumulation. Calcium ions contained in the calcite-promoting hydrogel and magnesium ions concentrated in G. thermoglucosidasius cells serve as the elements for magnesium-calcite synthesis. The observed decreases in sporulation rate and magnesium-calcite formation support the hypothesis that endospores act as nuclei for the synthesis of magnesium-calcite single crystals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00284-016-1115-8DOI Listing

Publication Analysis

Top Keywords

parent colony
12
sporulation rate
12
geobacillus thermoglucosidasius
8
thermoglucosidasius cells
8
calcium ions
8
calcite-promoting hydrogel
8
magnesium-calcite single
8
single crystals
8
calcite-forming hydrogel
8
magnesium-calcite synthesis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!