Desulfation of cell surface HSPG is an effective strategy for the treatment of gallbladder carcinoma.

Cancer Lett

Department of Molecular Oncology & Biliary Tract Surgery, Eastern Hepatobiliary Surgery Hospital, National Center of Liver Cancer, Second Military Medical University, Shanghai 200438, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical College, Xuzhou 221002, China. Electronic address:

Published: October 2016

Cell surface heparan sulfate proteoglycan (HSPG) is a group of critical glycoproteins that mediates signal transduction. Sulfated HSPG can mediate the activation of a variety of cell growth factor signal pathway to promote the progression of gallbladder carcinoma (GBC). This study analyzed 527 clinical GBC specimens and confirmed that the HSPG sulfation level was significantly higher in GBC tissues than in gallbladder mucosa (GBM) tissues. The high HSPG sulfation level was closely associated with poor differentiation, local metastasis, and advanced clinical stage of GBC; it was also associated with the shortening of disease-free survival (DFS) and overall survival (OS) and influenced the outcome of chemotherapy or radio-chemotherapy in patients with GBC recurrence. Inhibition of HSPG sulfation on the GBC cell surface using human sulfatase 1 (hSulf-1) significantly reduced the phosphorylation levels of growth factor receptors and signaling protein kinases in GBC cells, decreased cell responses to growth factors, and inhibited cell proliferation and migration abilities. In a nude mouse model with GBC xenografts, we observed that the xenograft tumor growth was suppressed and the phosphorylation levels of signaling proteins were downregulated, together with decreased expression of Ki67 and reduced sensitivity to bFGF (basic fibroblast growth factor) induction after inhibition of HSPG sulfation. Our study demonstrated that a high HSPG sulfation endows GBC with high malignant biological behaviors and a poor prognosis. Desulfation of cell surface HSPG can inhibit the kinase activities of a variety of signaling proteins, hinder the cell response to growth factors, and effectively inhibit the malignant biological behaviors of GBC cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2016.08.002DOI Listing

Publication Analysis

Top Keywords

hspg sulfation
20
cell surface
16
growth factor
12
gbc
10
hspg
9
desulfation cell
8
surface hspg
8
gallbladder carcinoma
8
sulfation level
8
high hspg
8

Similar Publications

Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin.

View Article and Find Full Text PDF

Background: The prion-like spreading of Tau pathology is the leading cause of disease progression in various tauopathies. A critical step in propagating pathologic Tau in the brain is the transport from the extracellular environment and accumulation inside naïve neurons. Current research indicates that human neurons internalize both the physiological extracellular Tau (eTau) monomers and the pathological eTau aggregates.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) and other tauopathies are characterized by intracellular aggregates of microtubule-associated protein tau that are actively released and promote proteopathic spread. Microglia engulf pathological proteins, but how they endocytose tau is unknown.

Methods: We measured endocytosis of different tau species by microglia after pharmacological modulation of macropinocytosis or clathrin-mediated endocytosis (CME) or antagonism/genetic depletion of known tau receptors heparan-sulfate proteoglycans (HSPGs) and low-density lipoprotein receptor-related protein 1 (LRP1).

View Article and Find Full Text PDF

Syndecan-1: a key player in health and disease.

Immunogenetics

December 2024

Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon.

Article Synopsis
  • Syndecan-1 (SDC-1) is a key protein on epithelial cells that plays roles in cell adhesion, interactions with the extracellular matrix, cell cycle regulation, and lipid clearance.
  • Alterations in SDC-1 are linked to various diseases, highlighting its potential as a target for diagnosis and treatment, though many mechanisms behind its functions are still not well understood.
  • This review explores SDC-1's involvement in health and diseases like liver disorders, inflammation, infections, and cancer, aiming to outline future research avenues for targeted therapies and early diagnosis.
View Article and Find Full Text PDF

Kidney stone disease (KSD) is a prevalent and complex condition, with an incidence of 85 cases per 100,000 individuals in Thailand. Notably, over 40% of cases are concentrated in the northeastern region, indicating a potential genetic influence, which is supported by genetic mutations reported in several families by our research group. Despite this, the genetic basis of KSD remains largely unknown for many Thai families.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!