A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ginsenoside Rg3, a Gating Modifier of EAG Family K+ Channels. | LitMetric

Ginsenoside Rg3, a Gating Modifier of EAG Family K+ Channels.

Mol Pharmacol

Nora Eccles Harrison Cardiovascular Research and Training Institute (W.W., A.G., F.B.S., M.C.S.), Department of Bioengineering (F.B.S.), Department of Internal Medicine, Division of Cardiovascular Medicine (M.C.S.), University of Utah, Salt Lake City, Utah

Published: October 2016

AI Article Synopsis

  • Ginsenoside 20(S)-Rg3 (Rg3) affects hERG1 channels by activating them at lower voltages and slowing their deactivation, but it's unclear if this effect extends to other channels in the ether-à-go-go family.
  • Researchers compared Rg3's impact on hERG1 with other channels (EAG1, ERG3, ELK1) using oocytes from frogs, finding that Rg3 significantly shifted activation potentials for all channels studied, with varying degrees of efficacy.
  • The study highlights Rg3's potential as a basis for developing targeted treatments for cardiovascular and neural disorders by better understanding its mechanisms.

Article Abstract

Ginsenoside 20(S)-Rg3 (Rg3) is a steroid glycoside that induces human ether-à-go-go-related gene type 1 (hERG1, Kv11.1) channels to activate at more negative potentials and to deactivate more slowly than normal. However, it is unknown whether this action is unique to hERG1 channels. Here we compare and contrast the mechanisms of actions of Rg3 on hERG1 with three other members of the ether-à-go-go (EAG) K(+) channel gene family, including EAG1 (Kv10.1), ERG3 (Kv11.3), and ELK1 (Kv12.1). All four channel types were heterologously expressed in Xenopus laevis oocytes, and K(+) currents were measured using the two-microelectrode voltage-clamp technique. At a maximally effective concentration, Rg3 shifted the half-point of voltage-dependent activation of currents by -14 mV for ERG1 (EC50 = 414 nM), -20 mV for ERG3 (EC50 = 374 nM), -28 mV for EAG1 (EC50 = 1.18 μM), and more than -100 mV for ELK1 (EC50 = 197 nM) channels. Rg3 also induced slowing of ERG1, ERG3, and ELK1 channel deactivation and accelerated the rate of EAG1 channel activation. A Markov model was developed to simulate gating and the effects of Rg3 on the voltage dependence of activation of hELK1 channels. Understanding the mechanism underlying the action of Rg3 may facilitate the development of more potent and selective EAG family channel activators as therapies for cardiovascular and neural disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034692PMC
http://dx.doi.org/10.1124/mol.116.104091DOI Listing

Publication Analysis

Top Keywords

eag family
8
rg3
6
channels
5
channel
5
ginsenoside rg3
4
rg3 gating
4
gating modifier
4
modifier eag
4
family channels
4
channels ginsenoside
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!