This study was undertaken to evaluate the impact of free-breathing (FB) vs. Apnea on Shear-wave elastography (SWE) measurements. Quantitative liver-stiffness measurements were obtained during FB and Apnea for 97 patients with various body-morphologies and liver textures. Quality indexes of FB and Apnea elasticity maps (percentage of non-filling (PNF), temporal (TV) and spatial (SV) variabilities) were computed. SWE measurements were also obtained from an homogeneous phantom at rest and during a mechanically-induced motion. Liver-stiffness values estimated from FB and Apnea acquisitions were correlated, particularly for homogeneous livers (r=0.76, P<0.001) and favorable body-morphologies (r=0.68, P<0.001). However FB values were consistently 20-25% lower than Apnea ones (P<0.001). FB also systematically resulted in degradation of TV (P<0.005) and PNF (P<0.001) compared to Apnea but had no impact on SV. With the phantom, no differences between SWE measurements at rest and during motion were observed. Apnea and FB measurements are highly correlated, although FB data quality is degraded compared to Apnea and estimated stiffness in FB is systematically lower than in Apnea. These discrepancies between rest and motion states were observed for patients but not for phantom data, suggesting that patient breath-holding impacts liver stiffness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2016.07.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!