Atomic layer deposition (ALD) is a commercially utilized deposition method for electronic materials. ALD growth of thin films offers thickness control and conformality by taking advantage of self-limiting reactions between vapor-phase precursors and the growing film. Perovskite oxides present potential for next-generation electronic materials, but to-date have mostly been deposited by physical methods. This work outlines a method for depositing SrTiO3 (STO) on germanium using ALD. Germanium has higher carrier mobilities than silicon and therefore offers an alternative semiconductor material with faster device operation. This method takes advantage of the instability of germanium's native oxide by using thermal deoxidation to clean and reconstruct the Ge (001) surface to the 2×1 structure. 2-nm thick, amorphous STO is then deposited by ALD. The STO film is annealed under ultra-high vacuum and crystallizes on the reconstructed Ge surface. Reflection high-energy electron diffraction (RHEED) is used during this annealing step to monitor the STO crystallization. The thin, crystalline layer of STO acts as a template for subsequent growth of STO that is crystalline as-grown, as confirmed by RHEED. In situ X-ray photoelectron spectroscopy is used to verify film stoichiometry before and after the annealing step, as well as after subsequent STO growth. This procedure provides framework for additional perovskite oxides to be deposited on semiconductors via chemical methods in addition to the integration of more sophisticated heterostructures already achievable by physical methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5091695PMC
http://dx.doi.org/10.3791/54268DOI Listing

Publication Analysis

Top Keywords

atomic layer
8
layer deposition
8
electronic materials
8
perovskite oxides
8
physical methods
8
annealing step
8
sto
7
epitaxial growth
4
growth perovskite
4
perovskite strontium
4

Similar Publications

Recent Advancements in 2D Material-Based Memristor Technology Toward Neuromorphic Computing.

Micromachines (Basel)

November 2024

Department of Microdevice Engineering, Korea University, Seoul 02841, Republic of Korea.

Two-dimensional (2D) layered materials have recently gained significant attention and have been extensively studied for their potential applications in neuromorphic computing, where they are used to mimic the functions of the human brain. Their unique properties, including atomic-level thickness, exceptional mechanical stability, and tunable optical and electrical characteristics, make them highly versatile for a wide range of applications. In this review, we offer a comprehensive analysis of 2D material-based memristors.

View Article and Find Full Text PDF

Effect of Ga Doping on the Stability and Optoelectronic Properties of ZnSnO Thin Film Transistor.

Micromachines (Basel)

November 2024

Key Laboratory of Architectural Cold Climate Energy Management, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China.

The electrical, stability and optoelectronic properties of GZTO TFTs with different Ga doping concentrations were investigated. Active layers were prepared by co-sputtering GaO and ZTO targets with different sputtering powers. The experimental results show that the surface of GZTO films is smooth, which is favorable for stability.

View Article and Find Full Text PDF

Integrating nanocrystalline diamond (NCD) films on silicon chips has great practical significance and many potential applications, including high-power electronic devices, microelectromechanical systems, optoelectronic devices, and biosensors. In this study, we provide a solution for ensuring heterogeneous interface integration between silicon (Si) chips and NCD films using low-temperature bonding technology. This paper details the design and implementation of a magnetron sputtering layer on an NCD surface, as well as the materials and process for the connection layer of the integrated interface.

View Article and Find Full Text PDF

Two-dimensional molybdenum disulfide (MoS) exhibits interesting properties for applications in micro and nano-electronics. The key point for sensing properties of a device is the quality of the material's surface. In this study, MoS layers were deposited on polymers by pulsed laser deposition (PLD).

View Article and Find Full Text PDF

Ta/Re layered composite material is a high-temperature material composed of the refractory metal tantalum (Ta) as the matrix and high-melting-point, high-strength rhenium (Re) as the reinforcement layer. It holds significant potential for application in aerospace engine nozzles. Developing the Ta/Re potential function is crucial for understanding the diffusion behavior at the Ta/Re interface and elucidating the high-temperature strengthening and toughening mechanism of Ta/Re layered composites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!