AI Article Synopsis

  • Guanine-nucleotide dissociation inhibitors (GDIs) control Rho family GTPases by keeping them away from the cell membrane, which affects their activity in cell movement.
  • The researchers developed a new biosensor called GDI.Cdc42 FLARE, using a technique that tracks Cdc42's activity by measuring fluorescence when it binds to GDIs.
  • Their findings demonstrated a close coordination between the release and activation of Cdc42, indicating that GDI-Cdc42 interactions play a vital role in regulating Cdc42's activity and are important for the timing of cell movements.

Article Abstract

Guanine-nucleotide dissociation inhibitors (GDIs) are negative regulators of Rho family GTPases that sequester the GTPases away from the membrane. Here we ask how GDI-Cdc42 interaction regulates localized Cdc42 activation for cell motility. The sensitivity of cells to overexpression of Rho family pathway components led us to a new biosensor, GDI.Cdc42 FLARE, in which Cdc42 is modified with a fluorescence resonance energy transfer (FRET) 'binding antenna' that selectively reports Cdc42 binding to endogenous GDIs. Similar antennae could also report GDI-Rac1 and GDI-RhoA interaction. Through computational multiplexing and simultaneous imaging, we determined the spatiotemporal dynamics of GDI-Cdc42 interaction and Cdc42 activation during cell protrusion and retraction. This revealed remarkably tight coordination of GTPase release and activation on a time scale of 10 s, suggesting that GDI-Cdc42 interactions are a critical component of the spatiotemporal regulation of Cdc42 activity, and not merely a mechanism for global sequestration of an inactivated pool of signaling molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5030135PMC
http://dx.doi.org/10.1038/nchembio.2145DOI Listing

Publication Analysis

Top Keywords

spatiotemporal dynamics
8
dynamics gdi-cdc42
8
rho family
8
gdi-cdc42 interaction
8
cdc42 activation
8
activation cell
8
cdc42
5
fret binding
4
binding antenna
4
antenna reports
4

Similar Publications

Background: Bangladesh is facing a formidable challenge in mitigating waterborne diseases risk exacerbated by climate change. However, a comprehensive understanding of the spatio-temporal dynamics of these diseases at the district level remains elusive. Therefore, this study aimed to fill this gap by investigating the spatio-temporal pattern and identifying the best tree-based ML models for determining the meteorological factors associated with waterborne diseases in Bangladesh.

View Article and Find Full Text PDF

The evolutionary model of construction land serves as a fundamental pillar in national spatial development and planning research. However, previous studies have overlooked the "climbing" mode of construction land on three-dimensional terrains. To address this issue, utilizing elevation data and land use data from 2010 to 2020, this study employs slope analysis, intensity analysis, spatio-temporal transformation, and PLUS model to elucidate the spatial expansion process and driving forces of urban construction land in Chongqing from both two-dimensional and three-dimensional perspectives.

View Article and Find Full Text PDF

Tissue-resident immune cells: from defining characteristics to roles in diseases.

Signal Transduct Target Ther

January 2025

Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction.

View Article and Find Full Text PDF

Even though the COVID-19 pandemic now belongs to the long history of infectious diseases that have struck humanity, pathogenic biological agents continue to pose a recurring threat in private places, but also and mainly in places where the public congregates. In our recent research published in this journal in 2022 and 2023, we considered the illustrative example of a commuter train coach in which a symptomatic or asymptomatic passenger, assumed to be infected with a respiratory disease, sits among other travellers. The passenger emits liquid particles containing, for example, COVID-19 virions or any other pathogen.

View Article and Find Full Text PDF

Multi-channel spatio-temporal graph attention contrastive network for brain disease diagnosis.

Neuroimage

January 2025

College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China. Electronic address:

Dynamic brain networks (DBNs) can capture the intricate connections and temporal evolution among brain regions, becoming increasingly crucial in the diagnosis of neurological disorders. However, most existing researches tend to focus on isolated brain network sequence segmented by sliding windows, and they are difficult to effectively uncover the higher-order spatio-temporal topological pattern in DBNs. Meantime, it remains a challenge to utilize the structure connectivity prior in the DBNs analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!