Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Solving the issue of infection associated with implanted bone substitutes is one of the modern challenges of the biomedical engineering field. The purpose of this study was to develop a novel porous scaffold with sufficient antibacterial activity for bone repair or regeneration. Porous nanohydroxyapatite/polyurethane (n-HA/PU) composite scaffolds containing different amounts of silver phosphate particles were prepared through the in situ foaming method. Subsequently, their physicochemical properties, antibacterial abilities, and preliminary cytocompatibilities were evaluated. The results indicated that the porosity and mechanical properties of the n-HA/PU scaffolds incorporated with Ag3PO4 did not change significantly compared to n-HA/PU scaffold without Ag3PO4. The release of Ag(+) was time and concentration dependent, increasing with the immersion time and Ag3PO4 percentage in the scaffolds. A continuous Ag(+) release can last more than 3 weeks. The antibacterial tests and cytocompatibility evaluation revealed that n-HA/PU scaffolds with 3 wt% Ag3PO4 (n-HA/PU3) exhibit stronger antimicrobial effects as well as satisfactory cytocompatibility. The n-HA/PU3 scaffolds may hold great potential for application in the field of bone regeneration, especially for infection-associated bone defect repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09205063.2016.1221699 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!