Affinity purification approaches have been successful in isolating native complexes for proteomic characterization. Structural heterogeneity and a degree of compositional heterogeneity of a complex do not usually impede progress in conducting such studies. In contrast, a complex intended for structural characterization should be purified in a state that is both compositionally and structurally homogeneous as well as at a higher concentration than required for proteomics. Recently, there have been significant advances in the application of electron microscopy for structure determination of large macromolecular complexes. This has heightened interest in approaches to purify native complexes of sufficient quality and quantity for structural determination by electron microscopy. The Tandem Affinity Purification (TAP) method has been optimized to extract and purify an 18-subunit, ~ 0.8 MDa ribonucleoprotein assembly from budding yeast (Saccharomyces cerevisiae) suitable for negative stain and electron cryo microscopy. Herein is detailed the modifications made to the TAP method, the rationale for making these changes, and the approaches taken to assay for a compositionally and structurally homogeneous complex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5091696 | PMC |
http://dx.doi.org/10.3791/54389 | DOI Listing |
Chemosphere
January 2025
Department of Agricultural Machinery Engineering, University of Tehran, Iran.
Soil oil pollution is a major environmental issue, especially in oil-producing nations, as it threatens the health of plants, animals, and humans. While bioremediation has been extensively utilized as a cost-effective method for restoring oil-contaminated soil, its environmental impact has garnered relatively little attention. Researchers often concentrate on reducing pollutant concentrations below permissible limits to restore soil quality.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India.
Levan is a fructan-type homopolysaccharide that has gained increasing attention due to its unique properties and promising applications. It is a fructose-based polymer produced through microbial fermentation by diverse microorganisms, including bacteria, yeasts and archaea. The ongoing research on levan mainly focuses on optimizing production processes, elucidating its biological functions, and uncover novel applications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry and Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:
A vast sum of fish waste is being annually discarded by marine fishing industries imposing serious environmental pollution concerns. However, these aquatic discarded matters are captivating sources of collagen, a fibrous protein with eminent social and economic relevance. Collagen is conventionally recovered using outdated complex processes requiring many reagents, multiple steps, and extended periods.
View Article and Find Full Text PDFJ Inorg Biochem
January 2025
Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA. Electronic address:
Due to its commercial availability and well-defined structure, the interaction between bovine protein β-lactoglobulin (βLG) and a wide variety of non-native ligands - including transition metal complexes - has been explored, but its application as an artificial metalloenzyme scaffold is limited. This protein is hypothesized to transport fatty acids and other nutrients during juvenile development, and it binds hydrophobic ligands inside a binding pocket constructed upon an 8-stranded β-barrel, called the 'calyx'. Herein, we compare the binding behavior of two rhenium(anthracene-bispyridine) ('Anth-py') tricarbonyl complexes, one with a 12‑carbon chain appended to the ligand scaffold ('Anth-py') to βLG.
View Article and Find Full Text PDFMol Divers
January 2025
Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
Cyclotides are a class of plant-derived cyclic peptides having a distinctive structure with a cyclic cystine knot (CCK) motif. They are stable molecules that naturally play a role in plant defense. Till date, more than 750 cyclotides have been reported among diverse plant taxa belonging to Cucurbitaceae, Violaceae, Rubiaceae, Solanaceae, and Fabaceae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!