This article presents a protocol for the production of protein-based nanoparticles that changes the hydrophobic surface to hydrophilic by a simple spray coating. These nanoparticles are produced by the polymerization reaction of alkyl cyanoacrylate on the surface of cereal protein (gliadin) molecules. Alkyl cyanoacrylate is a monomer that instantly polymerizes at RT when it is applied to the surface of materials. Its polymerization reaction is initiated by the trace amounts of weakly basic or nucleophilic species on the surface, including moisture. Once polymerized, the polymerized alkyl cyanoacrylates show a strong affinity with the object materials because nitrile groups are in the backbone of poly (alkyl cyanoacrylate). Proteins also work as initiator for this polymerization because they contain amine groups that can initiate the polymerization of cyanoacrylate. If aggregated protein is used as an initiator, protein aggregate is surrounded by the hydrophobic poly(alkyl cyanoacrylate) chains after the polymerization reaction of alkyl cyanoacrylate. By controlling the experimental condition, particles in the nanometer range are produced. The produced nanoparticles readily adsorb to the surface of most materials including glass, metals, plastics, wood, leather, and fabrics. When the surface of a material is sprayed with the produced nanoparticle suspension and rinsed with water, the micellar structure of nanoparticle changes its conformation, and the hydrophilic proteins are exposed to the air. As a result, the nanoparticle-coated surface changes to hydrophilic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993399 | PMC |
http://dx.doi.org/10.3791/54147 | DOI Listing |
Molecules
December 2024
Institute of Chemistry, Faculty of Science and Technology, University of Silesia, Szkolna 9, 40-007 Katowice, Poland.
A group of bithiophenyl compounds comprising the cyanoacrylate moiety were designed and successfully synthesized. The optical, (spectro)electrochemical, and aggregation-induced emission properties were studied. DFT calculations were used to explain the reaction's regioselectivity and to determine the molecules' energy parameters (i.
View Article and Find Full Text PDFCells
April 2024
Biomedical Technology Center, University of Muenster, Mendelstraße 17, D-48149 Muenster, Germany.
The assessment of nanoparticle cytotoxicity is challenging due to the lack of customized and standardized guidelines for nanoparticle testing. Nanoparticles, with their unique properties, can interfere with biochemical test methods, so multiple tests are required to fully assess their cellular effects. For a more reliable and comprehensive assessment, it is therefore imperative to include methods in nanoparticle testing routines that are not affected by particles and allow for the efficient integration of additional molecular techniques into the workflow.
View Article and Find Full Text PDFInt J Nanomedicine
April 2024
Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, 0379, Norway.
Background: Biodegradable poly(alkyl cyanoacrylate) (PACA) nanoparticles (NPs) are receiving increasing attention in anti-cancer nanomedicine development not only for targeted cancer chemotherapy, but also for modulation of the tumor microenvironment. We previously reported promising results with cabazitaxel (CBZ) loaded poly(2-ethylbutyl cyanoacrylate) NPs (PEBCA-CBZ NPs) in a patient derived xenograft (PDX) model of triple-negative breast cancer, and this was associated with a decrease in M2 macrophages. The present study aims at comparing two endotoxin-free PACA NP variants (PEBCA and poly(2-ethylhexyl cyanoacrylate); PEHCA), loaded with CBZ and test whether conjugation with folate would improve their effect.
View Article and Find Full Text PDFJ Mol Graph Model
March 2024
College of Science, University of Science and Technology Liaoning, Anshan, 114051, PR China; College of Material and Metallurgy, University of Science and Technology Liaoning, Anshan, 114051, Liaoning, PR China. Electronic address:
Triphenylamine and 9-phenylcarbazole are the most common electron donor groups, now based on the two groups, eight D-π-A dyes are designed as sensitizers for dye-sensitized solar cells (DSSCs).The eight dyes use the same π-conjugated bridge (thiophene moiety and carbon-carbon double bond) and acceptor fragment (cyanoacrylic acid), and the donor group is added with additional electron-D groups to the original triphenylamine and 9-phenylcarbazole (CH alkyl chain, CF perfluoroalkyl chain, and methoxy), and comparing the properties of several donor groups and terminal branched chains while ensuring that the π-bridges and acceptors are identical. The photophysical properties, electronically excited states, and chemical reactivity affecting the performed dyes have been determined with DFT and TD-DFT calculations of bond lengths and dihedral angles between fragments, frontier molecular orbitals, density of states, isosurface molecular electrostatic potential, charge density differences, fragment transition density matrix, UV-Vis absorption spectra, quantum chemical, and photovoltaic parameters.
View Article and Find Full Text PDFSmall
May 2023
Center for Safety of Substances and Products, National Institute for Public Health and the Environment - RIVM, Bilthoven, BA, 3720, The Netherlands.
Physiologically-based kinetic (PBK) modeling is a valuable tool to understand the kinetics of nanoparticles (NPs) in vivo. However, estimating PBK parameters remains challenging and commonly requires animal studies. To develop predictive models to estimate PBK parameter values based on NP characteristics, a database containing PBK parameter values and corresponding NP characteristics is needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!