Background: Apelin-13 (A13) regulates cardiac homeostasis. However, the effects and mechanism of A13 infusion after an acute myocardial injury (AMI) have not been elucidated. This study assesses the restorative effects and mechanism of A13 on the peri-infarct region in murine AMI model.

Methods: 51 FVB/N mice (12weeks, 30g) underwent AMI. A week following injury, continuous micro-pump infusion of A13 (0.5μg/g/day) and saline was initiated for 4-week duration. Dual contrast MRI was conducted on weeks 1, 2, 3, and 5, consisting of delayed-enhanced and manganese-enhanced MRI. Four mice in each group were followed for an extended period of 4weeks without further infusion and underwent MRI scans on weeks 7 and 9.

Results: A13 infusion demonstrated preserved LVEF compared to saline from weeks 1 to 4 (21.9±3.2% to 23.1±1.7%* vs. 23.5±1.7% to 16.9±2.8%, *p=0.02), which persisted up to 9weeks post-MI (+1.4%* vs. -9.4%, *p=0.03). Mechanistically, dual contrast MRI demonstrated significant decrease in the peri-infarct and scar % volume in A13 group from weeks 1 to 4 (15.1 to 7.4% and 34.3 to 25.1%, p=0.02, respectively). This was corroborated by significant increase in 5-ethynyl-2'-deoxyuridine (EdU(+)) cells by A13 vs. saline groups in the peri-infarct region (16.5±3.1% vs. 8.1±1.6%; p=0.04), suggesting active cell mitosis. Finally, significantly enhanced mobilization of CD34(+) cells in the peripheral blood and up-regulation of APJ, fibrotic, and apoptotic genes in the peri-infarct region were found.

Conclusions: A13 preserves cardiac performance by salvaging the peri-infarct region and may contribute to permanent restoration of the severely injured myocardium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5125301PMC
http://dx.doi.org/10.1016/j.ijcard.2016.07.263DOI Listing

Publication Analysis

Top Keywords

peri-infarct region
20
myocardial injury
8
a13
8
effects mechanism
8
mechanism a13
8
a13 infusion
8
dual contrast
8
contrast mri
8
peri-infarct
6
region
5

Similar Publications

White matter damage and subsequent demyelination significantly contribute to long-term functional impairment after ischaemic stroke. Identifying novel pharmacological targets to restore myelin integrity by promoting the maturation of oligodendrocyte precursor cells (OPCs) into new myelinating oligodendrocytes may open new perspectives for ischaemic stroke treatment. In this respect, previous studies highlighted the role of the G protein-coupled membrane receptor 17 (GPR17) as a key regulator of OPC differentiation in experimental models of brain injury, including ischaemic stroke.

View Article and Find Full Text PDF

Objective: Danshensu, a phenylpropanoid compound, is derived from the dry root and rhizome of Danshen (Salvia miltiorrhiza), a traditional Chinese medicinal herb. Evidence suggests that danshensu protects isolated rat hearts against ischemia/reperfusion injury by activating the protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) pathway or by inhibiting autophagy and apoptosis through the activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, danshensu promotes the postischemic regeneration of brain cells by upregulating the expression of brain-derived neurotrophic factor (BDNF) in the peri-infarct region.

View Article and Find Full Text PDF

Intrathecal administration of human umbilical cord mesenchymal stem cells may be a promising approach for the treatment of stroke, but its safety, effectiveness, and mechanism remain to be elucidated. In this study, good manufacturing practice-grade human umbilical cord mesenchymal stem cells (5 × 105 and 1 × 106 cells) and saline were administered by cerebellomedullary cistern injection 72 hours after stroke induced by middle cerebral artery occlusion in rats. The results showed (1) no significant difference in mortality or general conditions among the three groups.

View Article and Find Full Text PDF

Pretreatment with growth differentiation factor 15 augments cardioprotection by mesenchymal stem cells in myocardial infarction by improving their survival.

Stem Cell Res Ther

November 2024

Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.

Background: The clinical application of mesenchymal stem cells (MSCs) in myocardial infarction (MI) is severely hampered by their poor survival. Pretreatment is a key strategy that has been adopted to promote their therapeutic efficacy. This study aimed to investigate the benefit of growth differentiation factor 15-pretreated MSCs (GDF15-MSCs) in enhancing cardiac repair following MI and to determine the underlying mechanisms.

View Article and Find Full Text PDF

Rational development of fingolimod nano-embedded microparticles as nose-to-brain neuroprotective therapy for ischemic stroke.

Drug Deliv Transl Res

November 2024

Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, 2/F, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China.

Ischemic stroke is one of the major diseases causing varying degrees of dysfunction and disability worldwide. The current management of ischemic stroke poses significant challenges due to short therapeutic windows and limited efficacy, highlighting the pressing need for novel neuroprotective treatment strategies. Previous studies have shown that fingolimod (FIN) is a promising neuroprotective drug.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!