The precise localization and controlled chemical treatment of structures on a surface are significant challenges for common laboratory technologies. Herein, we introduce a microfluidic-based technology, employing a double-layer microfluidic device, which can trap and localize in situ and ex situ synthesized structures on microfluidic channel surfaces. Crucially, we show how such a device can be used to conduct controlled chemical reactions onto on-chip trapped structures and we demonstrate how the synthetic pathway of a crystalline molecular material and its positioning inside a microfluidic channel can be precisely modified with this technology. This approach provides new opportunities for the controlled assembly of structures on surface and for their subsequent treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4993413PMC
http://dx.doi.org/10.3791/54193DOI Listing

Publication Analysis

Top Keywords

controlled chemical
12
chemical treatment
8
structures surface
8
microfluidic channel
8
microfluidic
4
microfluidic pneumatic
4
pneumatic cages
4
cages novel
4
novel approach
4
approach in-chip
4

Similar Publications

Efficient delivery of sensitive nucleic acid payloads, including mRNA, in remains challenging, especially with traditional, labor-intensive transgenesis methods. We addressed these challenges using polymeric nanogels (NGs) as an advanced platform for mRNA delivery in . These polymeric delivery vehicles can be engineered to suit desired applications owing to their chemical versatility, resulting from the ability to conjugate multiple functional groups onto the same backbone.

View Article and Find Full Text PDF

Magnetic Field-Induced Control of Crystal Orientation in Porous CuNi Films for Enhanced Electrocatalytic Hydrogen Evolution.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Near-Net Forming of Light Metals of Liaoning Province, Dalian Jiaotong University, Dalian 116028, China.

Porous CuNi films are promising candidates for electrocatalytic water splitting, with their catalytic performance largely influenced by the crystallographic structure and chemical state. In this study, by employing a magnetic field-controlled bubble template-assisted electrodeposition method, CuNi films with a preferred Ni(111) crystal orientation were synthesized. Moreover, adjusting the magnetic field direction during deposition can affect the degree of preferred orientation and, consequently, the electrochemical activity of the films.

View Article and Find Full Text PDF

Introduction: Opioid-induced constipation (OIC) affects up to 90% of patients with cancer receiving long-term opioid-related analgesic therapy, resulting in various potential complications, compromised pain management and decreased quality of life. Laxatives stimulate or facilitate bowel evacuation. Traditional laxatives, such as polyethylene glycol and lactulose, are widely used because of their low cost, easy accessibility and tolerability.

View Article and Find Full Text PDF

Facile green treatment of mixed cellulose ester membranes by deep eutectic solvent to enhance dye removal and determination.

Int J Biol Macromol

December 2024

Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada. Electronic address:

Synthetic dye production and the consequent generation of dye-rich wastewater are major concerns of water quality in many countries. We developed a sustainable approach with deep eutectic solvent (DES) treatment to enhance the efficiency of mixed cellulose ester (MCE) membrane-based dye removal material. The DES composition and treatment conditions were optimized, and the treated membranes were comprehensively characterized.

View Article and Find Full Text PDF

Two-component flavin-dependent monooxygenases are of great interest as biocatalysts for the production of pharmaceuticals and other relevant molecules, as they catalyze chemically important reactions such as hydroxylation, epoxidation and halogenation. The monooxygenase components require a separate flavin reductase, which provides the necessary reduced flavin cofactor. The tryptophan halogenase Thal from Streptomyces albogriseolus is a well-characterized two-component flavin-dependent halogenase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!