Fanconi anemia (FA) is a recessive genetic disease characterized by congenital abnormalities, chromosome instability, progressive bone marrow failure (BMF), and a strong predisposition to cancer. Twenty FA genes have been identified, and the FANC proteins they encode cooperate in a common pathway that regulates DNA crosslink repair and replication fork stability. We identified a child with severe BMF who harbored biallelic inactivating mutations of the translesion DNA synthesis (TLS) gene REV7 (also known as MAD2L2), which encodes the mutant REV7 protein REV7-V85E. Patient-derived cells demonstrated an extended FA phenotype, which included increased chromosome breaks and G2/M accumulation upon exposure to DNA crosslinking agents, γH2AX and 53BP1 foci accumulation, and enhanced p53/p21 activation relative to cells derived from healthy patients. Expression of WT REV7 restored normal cellular and functional phenotypes in the patient's cells, and CRISPR/Cas9 inactivation of REV7 in a non-FA human cell line produced an FA phenotype. Finally, silencing Rev7 in primary hematopoietic cells impaired progenitor function, suggesting that the DNA repair defect underlies the development of BMF in FA. Taken together, our genetic and functional analyses identified REV7 as a previously undescribed FA gene, which we term FANCV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5004932 | PMC |
http://dx.doi.org/10.1172/JCI88010 | DOI Listing |
Pathol Res Pract
December 2024
Department of Pathology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan. Electronic address:
REV7 is a multifunctional protein involved in the DNA damage response, cell cycle regulation, gene expression, or primordial germ cell maintenance. REV7 expression in tumor cells is associated with clinical aggressive features and chemoresistance in several human malignancies, however, the clinicopathological significance of REV7 in lung adenocarcinoma (LUAD) has not been studied yet. In this study, we investigated the significance of REV7 expression in LUAD using clinical materials and cell lines.
View Article and Find Full Text PDFCureus
January 2024
First Department of Pathology, National and Kapodistrian University of Athens, Athens, GRC.
The purpose of this systematic review is to summarize all existing evidence, regarding the immunohistochemical expression of REV-7 in different human cancer pathology specimens. Moreover, the association of REV-7 expression with disease severity (clinical course), patients' survival, prognosis, and response to various treatments, such as chemotherapy and irradiation, was investigated. Three databases (PubMed, Scopus, and Cochrane) were systematically screened, from inception to September 2, 2023, as suggested by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement.
View Article and Find Full Text PDFCancer Sci
February 2024
Department of Pathology, Kitasato University School of Medicine, Sagamihara, Japan.
REV7 is a multifunctional protein implicated in various biological processes, including DNA damage response. REV7 expression in human cancer cells affects their sensitivity to DNA-damaging agents. In the present study, we investigated the significance of REV7 in pancreatic ductal adenocarcinoma (PDAC).
View Article and Find Full Text PDFAutoimmunity
December 2023
Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
Glioblastoma is the most common glioma with high mortality and poor prognosis. Radiation resistance is one of the large challenges in the treatment of glioma. The study aimed to identify whether DNA polymerase ζ affects glioma cell radiosensitivity.
View Article and Find Full Text PDFBiomol Ther (Seoul)
May 2023
Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, UK.
Mad2B (Mad2L2), the human homolog of the yeast Rev7 protein, is a regulatory subunit of DNA polymerase ζ that shares sequence similarity with the mitotic checkpoint protein Mad2A. Previous studies on Mad2B have concluded that it is a mitotic checkpoint protein that functions by inhibiting the anaphase-promoting complex/cyclosome (APC/C). Here, we demonstrate that Mad2B is activated in response to cisplatin-induced DNA damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!