Enhancing hole extraction inside the perovskite layer is the key factor for boosting photovoltaic performance. Realization of halide concentration gradient perovskite materials has been expected to exhibit rapid hole extraction due to the precise bandgap tuning. Moreover, a formation of Br-rich region on the tri-iodide perovskite layer is expected to enhance moisture stability without a loss of current density. However, conventional synthetic techniques of perovskite materials such as the solution process have not achieved the realization of halide concentration gradient perovskite materials. In this report, we demonstrate the fabrication of Br concentration gradient mixed halide perovskite materials using a novel and facile halide conversion method based on vaporized hydrobromic acid. Accelerated hole extraction and enhanced lifetime due to Br gradient was verified by observing photoluminescence properties. Through the combination of secondary ion mass spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy analysis, the diffusion behavior of Br ions in perovskite materials was investigated. The Br-gradient was found to be eventually converted into a homogeneous mixed halide layer after undergoing an intermixing process. Br-substituted perovskite solar cells exhibited a power conversion efficiency of 18.94% due to an increase in open circuit voltage from 1.08 to 1.11 V and an advance in fill-factor from 0.71 to 0.74. Long-term stability was also dramatically enhanced after the conversion process, i.e., the power conversion efficiency of the post-treated device has remained over 97% of the initial value under high humid conditions (40-90%) without any encapsulation for 4 weeks.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.6b02473DOI Listing

Publication Analysis

Top Keywords

perovskite materials
24
hole extraction
16
concentration gradient
16
gradient perovskite
12
perovskite
9
perovskite layer
8
realization halide
8
halide concentration
8
mixed halide
8
power conversion
8

Similar Publications

Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells.

Nat Commun

January 2025

School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, China.

Tin-lead perovskites provide an ideal bandgap for narrow-bandgap perovskites in all-perovskite tandem solar cells, fundamentally improving power conversion efficiency. However, light-induced degradation in ambient air is a major issue that can hinder the long-term operational stability of these devices. Understanding the specifics of what occurs during this pathway provides the direction for improving device stability.

View Article and Find Full Text PDF

A tellurium iodide perovskite structure enabling eleven-electron transfer in zinc ion batteries.

Nat Commun

January 2025

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.

The growing potential of low-dimensional metal-halide perovskites as conversion-type cathode materials is limited by electrochemically inert B-site cations, diminishing the battery capacity and energy density. Here, we design a benzyltriethylammonium tellurium iodide perovskite, (BzTEA)TeI, as the cathode material, enabling X- and B-site elements with highly reversible chalcogen- and halogen-related redox reactions, respectively. The engineered perovskite can confine active elements, alleviate the shuttle effect and promote the transfer of Cl on its surface.

View Article and Find Full Text PDF

Precise control of assembled structures of quantum dots (QDs) is crucial for realizing the desired photophysical properties, but this remains challenging. Especially, the one-dimensional (1D) control is rare due to the nearly isotropic nature of QDs. Herein, we propose a novel strategy for controlling the 1D-arrangement range of cubic perovskite QDs in solution based on the morphological modification of a supramolecular polymer (SP) template.

View Article and Find Full Text PDF

Formation Dynamics of Thermally Stable 1D/3D Perovskite Interfaces for High-Performance Photovoltaics.

Adv Mater

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

Direct understanding of the formation and crystallization of low-dimensional (LD) perovskites with varying dimensionalities employing the same bulky cations can offer insights into LD perovskites and their heterostructures with 3D perovskites. In this study, the secondary amine cation of N-methyl-1-(naphthalen-1-yl)methylammonium (M-NMA) and the formation dynamics of its corresponding LD perovskite are investigated. The intermolecular π-π stacking of M-NMA and their connection with inorganic PbI octahedrons within the product structures control the formation of LD perovskite.

View Article and Find Full Text PDF

Perovskite materials have garnered significant attention within a very short period of time by achieving competitive efficiency. In addition, this material demonstrated intriguing optoelectronic properties and versatile applications. Although they have confirmed amazing efficiency in solar cells at the laboratory scale, mass commercial manufacturing of perovskite solar cells (PSCs) is still a problem due to their poor longevity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!