Accurately identifying close or positive margins in real-time permits re-excision during surgical procedures. Intraoperative assessment of margins via gross examination and frozen section is a widely used tool to assist the surgeon in achieving complete resection. While this methodology permits diagnosis of freshly resected tissue, the process is fraught with misinterpretation and sampling errors. During fluorescence-guided surgery, an exogenous fluorescent agent specific for the target disease is imaged in order to navigate the surgical excision. As this technique quickly advances into the clinic, we hypothesize that the disease-specific fluorescence inherently contained within the resected tissues can be used to guide histopathological assessment. To evaluate the feasibility of fluorescence-guided pathology, we evaluated head and neck squamous cell carcinoma tumour specimens and margins resected from animals and patients after systemic injection of cetuximab-IRDye800CW. In a preclinical model of luciferase-positive tumour resection using bioluminescence as the gold standard, fluorescence assessment determined by closed-field fluorescence imaging of fresh resected margins accurately predicted the presence of disease in 33/39 positive margins yielding an overall sensitivity of 85%, specificity of 95%, positive predictive value (PPV) of 94%, and a negative predictive value (NPV) of 87%, which was superior to both surgical assessment (54%, 61%, 57%, and 58%) and pathological assessment (49%, 95%, 91%, and 66%), respectively. When the power of the technique was evaluated using human-derived tumour tissues, as little as 0.5mg (1mm(3)) of tumour tissue was identified (tumour-to-background-ratio:5.2). When the sensitivity/specificity of fluorescence-guided pathology was determined using traditional histological assessment as the gold standard in human tissues obtained during fluorescence-guided surgery, the technique was highly accurate with a sensitivity of 91%, specificity of 85%, PPV of 81%, and NPV of 93% for 90 human-derived samples. This approach can be used as a companion to the pathologist, eliminating confounding factors while impacting surgical intervention and patient management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907060 | PMC |
http://dx.doi.org/10.1002/cjp2.40 | DOI Listing |
Anal Chem
January 2025
College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
Abnormal ferrous ion (Fe) levels lead to an increase in reactive oxygen species (ROS) in cells, disrupting intracellular viscosity and the occurrence of hepatocellular carcinoma (HCC). Simultaneously visualizing Fe and intracellular viscosity is essential for understanding the detailed pathophysiological processes of HCC. Herein, we report the first dual-responsive probe, , capable of simultaneously monitoring Fe and viscosity.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Department of Chemistry, Columbia University, New York, NY, USA.
Van der Waals (vdW) semiconductors have emerged as promising platforms for efficient nonlinear optical conversion, including harmonic and entangled photon generation. Although major efforts are devoted to integrating vdW materials in nanoscale waveguides for miniaturization, the realization of efficient, phase-matched conversion in these platforms remains challenging. Here, to address this challenge, we report a far-field ultrafast imaging method to track the propagation of both fundamental and harmonic waves within vdW waveguides with femtosecond and sub-50 nanometre spatiotemporal precision.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Optoelectronic Sensing and Intelligent Control, Hubei University of Science and Technology, Xianning, 437100, China.
We present a novel approach to realize three-dimensional (3D) matter wave solitons (MWSs) transformation between different optical potential wells by manipulating their depths and centers. The 3D MWSs are obtained by the square operator method, and transformed to other types (elliptical/ring/necklace) by performing time evolution with the split-step Fourier method. The effectiveness and reliability of our approach is demonstrated by comparing the transformed solitons with those obtained iteratively using the square operator method.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China.
Photoreceptors are specialized neurons at the core of the retina's functionality, with optical accessibility and exceptional sensitivity to systemic metabolic stresses. Here we show the ability of risk-free, in vivo photoreceptor assessment as a window into systemic health and identify shared metabolic underpinnings of photoreceptor degeneration and multisystem health outcomes. A thinner photoreceptor layer thickness is significantly associated with an increased risk of future mortality and 13 multisystem diseases, while systematic analyses of circulating metabolomics enable the identification of 109 photoreceptor-related metabolites, which in turn elevate or reduce the risk of these health outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!