Background: Inflammatory responses to wear debris cause osteolysis that leads to aseptic prosthesis loosening and hip arthroplasty failure. Although osteolysis is usually associated with aseptic loosening, it is rarely seen around stable implants. Aseptic implant loosening is a simple radiologic phenomenon, but a complex immunological process. Particulate debris produced by implants most commonly causes osteolysis, and this is called particle-associated periprosthetic osteolysis (PPO).

Objective: The objective of this review is to outline the features of particle-associated periprosthetic osteolysis to allow the physician to recognise this condition and commence early treatment, thereby optimizing patient outcome.

Methods: A thorough literature search was performed using available databases, including Pubmed, to cover important research published covering particle-associated PPO.

Results: Although osteolysis causes bone resorption, clinical, animal, and in vitro studies of particle bioreactivity suggest that particle-associated PPO represents the culmination of several biological reactions of many cell types, rather than being caused solely by the osteoclasts. The biological activity is highly dependent on the characteristics and quantity of the wear particles.

Conclusion: Despite advances in total hip arthroplasty (THA), particle-associated PPO and aseptic loosening continue to be major factors that affect prosthetic joint longevity. Biomarkers could be exploited as easy and objective diagnostic and prognostic targets that would enable testing for osteolysis after THA. Further research is needed to identify new biomarkers in PPO. A comprehensive understanding of the underlying biological mechanisms is crucial for developing new therapeutic interventions to reverse or suppress biological responses to wear particles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4951796PMC
http://dx.doi.org/10.2174/1874325001610010241DOI Listing

Publication Analysis

Top Keywords

periprosthetic osteolysis
12
hip arthroplasty
12
biological mechanisms
8
osteolysis
8
responses wear
8
aseptic loosening
8
particle-associated periprosthetic
8
particle-associated ppo
8
biological
5
particle-associated
5

Similar Publications

The development of strategies for the prevention and treatment of aseptic loosening of prostheses stands as a critical area of global research interest. The pyroptosis of local macrophages triggered by wear particles plays a pivotal role in the onset of periprosthetic osteolysis and subsequent loosening. Extracellular vesicles, carrying the surface components and regulatory molecules of their parent cells, embody the cellular characteristics and biological functions of these progenitors.

View Article and Find Full Text PDF

Osthole ameliorates wear particle-induced osteogenic impairment by mitigating endoplasmic reticulum stress via PERK signaling cascade.

Mol Med

December 2024

Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.

Background: Periprosthetic osteolysis and subsequent aseptic loosening are the leading causes of failure following total joint arthroplasty. Osteogenic impairment induced by wear particles is regarded as a crucial contributing factor in the development of osteolysis, with endoplasmic reticulum (ER) stress identified as a key underlying mechanism. Therefore, identifying potential therapeutic targets and agents that can regulate ER stress adaption in osteoblasts is necessary for arresting aseptic loosening.

View Article and Find Full Text PDF

Osteoblastic ferroptosis inhibition by small-molecule promoting GPX4 activation for peri-prosthetic osteolysis therapy.

J Nanobiotechnology

December 2024

Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, China.

Peri-prosthesis osteolysis (PPO) represents the most severe complication of total joint arthroplasty (TJA) surgery and imposes the primary cause of prosthesis failure and subsequent revision surgery. Antiresorptive therapies are usually prescribed to treat PPO, especially for elderly people. Nevertheless, the efficacy of anti-osteoporotic medications remains constrained.

View Article and Find Full Text PDF

Purpose: This study aimed to assess the long-term results of THA patients who received a cementless short stem regarding clinical outcomes, bone changes, complications, and incidence of femoral revision.

Methods: A retrospective evaluation of the first 100 THA employing a type 2B cementless stem (Mini hip stem, Corin, Cirencester, United Kingdom) by the same surgeon at one institution. We only include patients with 18 years or more, and with a minimum follow up of 8 years.

View Article and Find Full Text PDF

Purpose: The polarization of macrophages towards the pro-inflammatory M1 phenotype and osteoclast overactivation play a significant role in the pathogenesis of aseptic loosening of orthopedic implants. This study sought to examine the expression and activation of macrophages and osteoclasts in implant biopsies with respect to epidermal growth factor receptor (EGFR) signaling and to assess the potential of EGFR inhibition in mitigating titanium particle-induced bone resorption in a cranial resorption murine model.

Methods: Bone marrow-derived macrophages (BMDMs) were stimulated with Tumor Necrosis Factor-alpha (TNF-α) and Interferon-gamma (IFN-γ) initially.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!