Recent Advances in Understanding the Molecular Mechanisms Regulating the Root System Response to Phosphate Deficiency in Arabidopsis.

Curr Genomics

INRA, UMR Biochimie et Physiologie Moléculaire des Plantes, Campus INRA/SupAgro, 2 place Viala, 34060 Montpellier cedex 2,France.

Published: August 2016

Phosphorus (P) is an essential macronutrient for plant growth and development. Inorganic phosphate (Pi) is the major form of P taken up from the soil by plant roots. It is well established that under Pi deficiency condition, plant roots undergo striking morphological changes; mainly a reduction in primary root length while increase in lateral root length as well as root hair length and density. This typical phenotypic change reflects complex interactions with other nutrients such as iron, and involves the activity of a large spectrum of plant hormones. Although, several key proteins involved in the regulation of root growth under Pi-deficiency have been identified in Arabidopsis, how plants adapt roots system architecture in response to Pi availability remains an open question. In the current post-genomic era, state of the art technologies like high-throughput phenotyping and sequencing platforms,"omics" methods, together with the widespread use of system biology and genome-wide association studies will help to elucidate the genetic architectures of root growth on different Pi regimes. It is clear that the large-scale characterization of molecular systems will improve our understanding of nutrient stress phenotype and biology. Herein, we summarize the recent advances and future directions towards a better understanding of Arabidopsis root developmental programs functional under Pi deficiency. Such a progress is necessary to devise strategies to improve the Pi use efficiency in plants that is an important issue for agriculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4955032PMC
http://dx.doi.org/10.2174/1389202917666160331201812DOI Listing

Publication Analysis

Top Keywords

plant roots
8
root length
8
root growth
8
root
7
advances understanding
4
understanding molecular
4
molecular mechanisms
4
mechanisms regulating
4
regulating root
4
root system
4

Similar Publications

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.

View Article and Find Full Text PDF

Energy metabolism, antioxidant defense system, metal transport, and ion homeostasis are key contributors to Cd tolerance in SSSL derived from wild rice.

J Hazard Mater

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Cadmium (Cd) toxicity poses major challenges to rice cultivation, affecting plant growth and development. Wild rice and nanoparticles offer promising strategies to enhance Cd tolerance, yet little is known about their combined effects. This study evaluates the single segment substitution line (SG004) from Oryza glumaepatula (wild rice) and its response to Cd stress compared to cultivated rice (HJX74).

View Article and Find Full Text PDF

Lead (Pb), a toxic metal, causes severe health hazards to both humans and plants due to environmental pollution. Biochar addition has been efficiently utilized to enhance growth of plants as well as yield in the presence of Pb-induced stress. The present research introduces a novel use of biochar obtained from the weed Achyranthes japonica to enhance the growth of plants in Pb-contaminated soil.

View Article and Find Full Text PDF

Multiple insights into differential Cd detoxification mechanisms in new germplasms of mung bean (Vigna radiata L.) and potential mitigation strategy.

Plant Physiol Biochem

December 2024

College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China. Electronic address:

Long-term cadmium (Cd) exposure inhibits plant growth and development, reduces crop yield and quality, and threatens food security. Exploring the Cd tolerance mechanisms and safe production of crops in Cd-contaminated environment has become a worldwide concern. In this study, mung bean (Vigna radiata L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!