Molecular and structural basis of low interfacial energy of complex coacervates in water.

Adv Colloid Interface Sci

Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea. Electronic address:

Published: January 2017

Complex coacervate refers to a phase-separated fluid, typically of two oppositely charged polyelectrolytes in solution, representing a complex fluid system that has been shown to be of essential interest to biological systems, as well as for soft materials processing owing to the expectation of superior underwater coating or adhesion properties. The significance and interest in complex coacervate fluids critically rely on its low interfacial tension with respect to water that, in turn, facilitates the wetting of macromolecular or material surfaces under aqueous conditions, provided there is attractive interaction between the polyelectrolyte constituents and the surface. However, the molecular and structural bases of these properties remain unclear. Recent studies propose that the formation of water-filled and bifluidic sponge-like nanostructured network, driven by the tuning of electrostatic interactions between the polyelectrolyte constituents or their complexes may be a common feature of complex coacervate fluids that display low fluid viscosity and low interfacial tension, but more studies are needed to verify the generality of these observations. In this review, we summarize representative studies of interfacial tension and ultrastructures of complex coacervate fluids. We highlight that a consensus property of the complex coacervate fluid is the observation of high or even bulk-like water dynamics within the dense complex coacervate phase that is consistent with a low cohesive energy fluid. Our own studies on this subject are enabled by the application of magnetic resonance relaxometry methods relying on spin labels tethered to polyelectrolyte constituents or added as spin labeled probe molecules that partition into the dense versus the equilibrium coacervate phase, permitting the extraction of information on local polymer dynamics, polymer packing and local water dynamics. We conclude with a snapshot of our current perspective on the molecular and structural bases of the low interfacial tension of complex coacervate fluids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cis.2016.07.003DOI Listing

Publication Analysis

Top Keywords

complex coacervate
28
low interfacial
16
coacervate fluids
16
interfacial tension
16
molecular structural
12
polyelectrolyte constituents
12
complex
9
coacervate
8
structural bases
8
water dynamics
8

Similar Publications

Hydrogen Bonding-Driven Adaptive Coacervates as Protocells.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

Coacervation based on liquid-liquid phase separation (LLPS) has been widely used for the preparation of artificial protocells and to mimic the dynamic organization of membrane-free organelles. Most complex synthetic coacervates are formed through electrostatic interactions but cannot withstand high ionic strength conditions (>0.1 M).

View Article and Find Full Text PDF

Insights into the Mechanism of Protein Loading by Chain-Length Asymmetric Complex Coacervates.

Biomacromolecules

January 2025

Instituto de Química de los Materiales, Ambiente y Energía, CONICET, Universidad de Buenos Aires, Intendente Güiraldes 2160, CABA (Buenos Aires) 1428, Argentina.

The study of the phase behavior of polyelectrolyte complex coacervates has attracted significant attention in recent years due to their potential use as membrane-less organelles, microreactors, and drug delivery platforms. In this work, we investigate the mechanism of protein loading in chain-length asymmetric complex coacervates composed of a polyelectrolyte and an oppositely charged multivalent ion. Unlike the symmetric case (polycation + polyanion), we show that protein loading is highly selective based on the protein's net charge: only proteins with charges opposite to the polyelectrolyte can be loaded.

View Article and Find Full Text PDF

A low-molecular-weight compound whose structure strikes a fine balance between hydrophobicity and hydrophilicity may form coacervates via liquid-liquid phase separation in an aqueous solution. These coacervates may encapsulate and convoy proteins across the plasma membrane into the cell. However, releasing the cargo from the vehicle to the cytosol is challenging.

View Article and Find Full Text PDF

Unlabelled: Fibroblasts are considered a key player in the wound healing process. Although this cellular family is constituted by several distinct subtypes, dermal fibroblasts are crucial thanks to their ability to secrete pro-regenerative growth factors, extracellular matrix (ECM) proteins and their immune and anti-inflammatory role. Sophorolipids (SL), sophorosides (SS) and glucolipids (G), mono-unsaturated (C18:1) or saturated (C18:0), glycolipids derived from microbial fermentation of wild type or engineered yeast , constitute a novel sustainable class of bio-based chemicals with interesting physicochemical characteristics, which allow them to form soft diverse structures from hydrogels to vesicles, micelles or complex coacervates with potential interest in skin regeneration applications.

View Article and Find Full Text PDF

Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!