Leishmania exosomes and other virulence factors: Impact on innate immune response and macrophage functions.

Cell Immunol

Departments of Medicine, Microbiology and Immunology, McGill University, 3775 University Street, Montréal, QC H3A 2B4, Canada; Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Montréal, QC H4A 3J1, Canada. Electronic address:

Published: November 2016

Leishmania parasites are the causative agents of the leishmaniases, a collection of vector-borne diseases that range from simple cutaneous to fatal visceral forms. Employing potent immune modulation mechanisms, Leishmania is able to render the host macrophage inactive and persist inside its phagolysosome. In the last few years, the role of exosomes in Leishmania-host interactions has been increasingly investigated. For instance, it was reported that Leishmania exosome release is augmented following temperature shift, a condition mimicking parasite's entry into its mammalian host. Leishmania exosomes were found to strongly affect macrophage cell signaling and functions, similarly to whole parasites. Importantly, these vesicles were shown to be pro-inflammatory, capable to recruit neutrophils at their inoculation site exacerbating the pathology. In this review, we provide the most recent insights on the role of exosomes and other virulence factors, especially the surface protease GP63, in Leishmania-host interactions, deepening our knowledge on leishmaniasis and paving the way for the development of new therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellimm.2016.07.013DOI Listing

Publication Analysis

Top Keywords

leishmania exosomes
8
exosomes virulence
8
virulence factors
8
role exosomes
8
leishmania-host interactions
8
leishmania
5
factors impact
4
impact innate
4
innate immune
4
immune response
4

Similar Publications

The study of extracellular vesicles has become an incredibly important field of study, but the inherent heterogeneity of these vesicles continues to make their study challenging. The genetic variability and well-documented protocols for the growth and vesicle isolation from parasites provide a unique opportunity to compare the heterogeneity of different populations secreted by clones. was cultured on solid SDM agar plates and 8 clonal colonies were selected.

View Article and Find Full Text PDF

() promastigotes secrete exosomes that are crucial in host-pathogen interactions and intercellular communication by carrying parasite-specific molecules. Although the composition of cargos in exosomes is known, the effects of the unique metabolic repertoire on immunometabolism rewiring of macrophage polarization are poorly understood. Interestingly, we found the enrichment of polyamines (PAs) such as spermidine and putrescine in the -exosomes.

View Article and Find Full Text PDF

Leishmaniasis is considered one of the most critical health concerns in the world. Unfortunately, no protective vaccines exist and conventional treatments are relatively ineffective. Therefore, new strategies are necessary against leishmaniasis.

View Article and Find Full Text PDF

Biogenesis of EVs in Trypanosomatids.

Curr Top Membr

October 2024

Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Antimicrobial Resistance Institute of São Paulo (Aries), São Paulo, Brazil. Electronic address:

Trypanosomes are protozoan parasites responsible for human diseases such as Chagas disease, African trypanosomiasis, and leishmaniasis. These organisms' growth in various environments and exhibit multiple morphological stages, while adapting their surface components. They acquire and release materials extensively to get nutrients and manage interactions with the extracellular environment.

View Article and Find Full Text PDF

This chapter focuses on the interplay between Leishmania parasites and their host, particularly on Leishmania RNA virus (LRVs) and extracellular vesicles (EVs) in modulating host-pathogen interactions. Leishmania EVs have been shown to facilitate gene transfer, including drug-resistance genes, enhancing the parasites' survival and resistance to antileishmanial therapeutics. These EVs also play a significant role in host immune modulation by altering cytokine production in macrophages and promoting an anti-inflammatory environment that favours parasitic persistence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!