Control of quorum sensing and virulence factors of Pseudomonas aeruginosa using phenylalanine arginyl β-naphthylamide.

J Med Microbiol

Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.

Published: October 2016

The spread of multidrug-resistant Pseudomonas aeruginosa isolates constitutes a serious clinical challenge. Bacterial efflux machinery is a crucial mechanism of resistance among P. aeruginosa. Efflux inhibitors such as phenylalanine arginyl β-naphthylamide (PAβN) promote the bacterial susceptibility to antimicrobial agents. The pathogenesis of P. aeruginosa is coordinated via quorum sensing (QS). This study aims to find out the impact of efflux pump inhibitor, PAβN, on QS and virulence attributes in clinical isolates of P. aeruginosa. P. aeruginosa isolates were purified from urine and wound samples, and the antimicrobial susceptibility was carried out by disc diffusion method. The multidrug-resistant and the virulent isolates U16, U21, W19 and W23 were selected. PAβN enhanced their susceptibility to most antimicrobial agents. PAβN reduced QS signalling molecules N-3-oxo-dodecanoyl-l-homoserine lactone and N-butyryl-l-homoserine lactone without affecting bacterial viability. Moreover, PAβN eliminated their virulence factors such as elastase, protease, pyocyanin and bacterial motility. At the transcription level, PAβN significantly (P<0.01) diminished the relative expression of QS cascade (lasI, lasR, rhlI, rhlR, pqsA and pqsR) and QS regulated-type II secretory genes lasB (elastase) and toxA (exotoxin A) compared to the control untreated isolates U16 and U21. In addition, PAβN eliminated the relative expression of pelA (exopolysaccharides) in U16 and U21 isolates. Hence, P. aeruginosa-tested isolates became hypo-virulent upon using PAβN. PAβN significantly blocked the QS circuit and inhibited the virulence factors expressed by clinical isolates of P. aeruginosa. PAβN could be a prime substrate for development of QS inhibitors and prevention of P. aeruginosa pathogenicity.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.000327DOI Listing

Publication Analysis

Top Keywords

quorum sensing
8
virulence factors
8
pseudomonas aeruginosa
8
phenylalanine arginyl
8
arginyl β-naphthylamide
8
aeruginosa isolates
8
susceptibility antimicrobial
8
antimicrobial agents
8
aeruginosa
6
paβn
6

Similar Publications

Microbial biofilms are universal. The intricate tapestry of biofilms has remarkable implications for the environment, health, and industrial processes. The field of space microbiology is actively investigating the effects of microgravity on microbes, and discoveries are constantly being made.

View Article and Find Full Text PDF

Burkholderia contaminans SK875, a member of Burkholderia cepacia complex (Bcc), are known to cause lung infections in cystic fibrosis patients. To gain deeper insights into its quorum sensing (QS)-mediated pathogenicity, we employed a transposon (Tn) insertion-based random mutagenesis approach. A Tn mutant library comprising of 15,000 transconjugants was generated through conjugation between wild-type (WT) recipient B.

View Article and Find Full Text PDF

Exploring daidzein dimethyl ether from Albizzia lebbeck as a novel quorum sensing inhibitor against Pseudomonas aeruginosa: Insights from in vitro and in vivo studies.

Bioorg Chem

January 2025

Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Infections of multidrug-resistant pathogens including Pseudomonas aeruginosa, cause a high risk of mortality in immunocompromised patients and underscore the need for novel natural antibacterial drugs. In this study, common phytochemicals prevalent in fruits and vegetables have been demonstrated for their ability to inhibit quorum sensing (QS) in Pseudomonas aeruginosa PAO1 (PA). Ten compounds were screened virtually by molecular docking, among which, daidzein dimethyl ether originally from Albizzia lebbeck showed the most significant inhibitory effect on the formation of biofilm and the accumulation of virulence factors, including elastase, pyocyanin and rhamnolipid in PA.

View Article and Find Full Text PDF

Metagenomic insight into the diffusion signal factor mediated social traits of anammox consortia after starvation.

J Environ Manage

January 2025

School of Engineering, Hangzhou Normal University, Hangzhou, 311121, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China. Electronic address:

Biomass starvation is common in biological wastewater treatment. As a social trait of microbial community, how quorum sensing (QS) regulated bacterial trade-off through interactions after starvation remains unclear. This study deciphered the mechanism of anaerobic ammonium oxidation (anammox) consortia in response to starvation, including reducing extracellular electron transfer (EET), adenosine 5'-triphosphate (ATP) content and amino acid metabolism.

View Article and Find Full Text PDF

Biological studies reveal the role of trpA gene in biofilm formation, motility, hemolysis and virulence in Vibrio anguillarum.

Microb Pathog

January 2025

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China. Electronic address:

Vibrio anguillarum is a pathogen responsible for vibriosis in aquaculture animals. The formation of bacterial biofilm contributes to infections and increases resistance to antibiotics. Tryptophanase and its substrate tryptophan have been recognized as signal molecules regulating bacterial biofilm formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!