Euthyneuran gastropods represent one of the most diverse lineages in Mollusca (with over 30,000 species), play significant ecological roles in aquatic and terrestrial environments and affect many aspects of human life. However, our understanding of their evolutionary relationships remains incomplete due to missing data for key phylogenetic lineages. The present study integrates such a neglected, ancient snail family Ringiculidae into a molecular systematics of Euthyneura for the first time, and is supplemented by the first microanatomical data. Surprisingly, both molecular and morphological features present compelling evidence for the common ancestry of ringiculid snails with the highly dissimilar Nudipleura-the most species-rich and well-known taxon of sea slugs (nudibranchs and pleurobranchoids). A new taxon name Ringipleura is proposed here for these long-lost sisters, as one of three major euthyneuran clades with late Palaeozoic origins, along with Acteonacea (Acteonoidea + Rissoelloidea) and Tectipleura (Euopisthobranchia + Panpulmonata). The early Euthyneura are suggested to be at least temporary burrowers with a characteristic 'bubble' shell, hypertrophied foot and headshield as exemplified by many extant subtaxa with an infaunal mode of life, while the expansion of the mantle might have triggered the explosive Mesozoic radiation of the clade into diverse ecological niches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4976385 | PMC |
http://dx.doi.org/10.1038/srep30908 | DOI Listing |
Genes (Basel)
January 2025
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
Background/objectives: The Pacific abalone originated in cold waters and is an economically important aquaculture shellfish in China. Our goal was to clarify the current status of the genetic structure of Pacific abalone in China.
Methods: In this study, eighteen polymorphic EST-SSR loci were successfully developed based on the hemolymph transcriptome data of Pacific abalone, and thirteen highly polymorphic EST-SSR loci were selected for the genetic variation analysis of the six populations collected.
Biology (Basel)
January 2025
Department of Marine Organism Taxonomy & Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266500, China.
The genus G [...
View Article and Find Full Text PDFAquat Toxicol
December 2024
Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman; UNESCO Chair in Marine Biotechnology, CEMB, Sultan Qaboos University, Al Khoud 123, PO Box 50, Muscat, Oman. Electronic address:
This study investigated microplastic pollution in the large mud snail Terebralia palustris (Linnaeus, 1767) (Gastropoda: Potamididae) inhabiting the Avicennia marina mangrove ecosystems along the Sea of Oman. A modified digestion protocol, combining two methods, was employed to improve the detection of microplastics within the snail tissue. Results indicated that 50 % of the examined snails contained microplastics, with significant variability observed among different lagoons.
View Article and Find Full Text PDFPLoS One
December 2024
Bodega Marine Laboratory, California Department of Fish and Wildlife and University of California Davis, Bodega Bay, California, United States of America.
BMC Genomics
December 2024
Key Laboratory of Mariculture and Stock Enhancement in North China's Sea (Dalian Ocean University), Ministry of Agriculture, Dalian, 116023, China.
In this study, we applied comparative transcriptomics and proteomics techniques to systematically investigate the dynamic expression patterns of genes and proteins at various stages of early embryonic development of the gastropod Neptunea arthritica cumingii. Twelve cyclin-dependent kinase (CDKs) genes and five downstream proteins associated with these CDKs were identified. Through techniques such as qRT-PCR, our data elucidate for the first time the regulatory functions of CDK family genes and establish CDKs as a pivotal gene cluster in the early embryonic development of N.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!