Ionic liquids (ILs) have been proposed as suitable sorbents for CO capture because of their high CO absorption capacity, thermal stability, negligible vapour pressure and physico-chemical tunability. However, the environmental implications of ILs are currently largely unknown because of a lack of data. The issue is further complicated by their complex chemical structures and numerous precursors for which environmental data are scarce or non-existent. In an attempt to address this issue, this paper presents a new methodology for estimating life cycle environmental impacts of novel ILs, with the aim of aiding synthesis and selection of more sustainable CO sorbents. The methodology consists of four main steps: (1) selection of an appropriate IL and synthesis route; (2) construction of a life cycle tree; (3) life cycle assessment; and (4) recommendations for improvements. The application of the methodology is illustrated using trihexyltetradecylphosphonium 1,2,4-triazolide ([P][124Triz]), a promising IL for CO capture currently under development. Following the above steps, the paper demonstrates how the data obtained from laboratory synthesis of the IL can be scaled up to industrial production to estimate life cycle impacts and identify environmental hotspots. In this particular case, the main hotspots are the precursors used in the synthesis of the IL. Comparison of impacts with monoethanolamine (MEA), currently the most widely-used CO sorbent, suggests that [P][124Triz] has much higher impacts than MEA, including global warming potential. However, human toxicity potential is significantly higher for MEA. Therefore, the proposed methodology can be used to optimise the design of ILs and to guide selection of more sustainable CO sorbents. Although the focus is on ILs, the methodology is generic and can be applied to other chemicals under development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6fd00054a | DOI Listing |
Environ Sci Pollut Res Int
December 2024
Biochemical Conversion Division, Sardar Swaran Singh National Institute of Bio-Energy, Kapurthala, Punjab, 144 603, India.
The disposal of municipal solid waste (MSW) in urban areas is a big issue nowadays in most of the countries. Developing countries like India are struggling with the continuous indiscriminate disposal of MSW due to rapid increase in the urbanization, industrialization, and human population growth. The mismanagement of MSW causes adverse environmental impacts, public health risks, and other socio-economic problems.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Wageningen University & Research, 6700 AH Wageningen, the Netherlands.
Recent advances in our understanding of methanogenesis have led to the development of antimethanogenic feed additives (AMFA) that can reduce enteric methane (CH) emissions to varying extents, via direct targeting of methanogens, alternative electron acceptors, or altering the rumen environment. Here we examine current and new approaches used for the accounting (i.e.
View Article and Find Full Text PDFArch Biochem Biophys
December 2024
Department of Biological Sciences, Marquette University, Milwaukee, WI 53201-1881, USA. Electronic address:
Pyruvate carboxylase (PC) catalyzes the carboxylation of pyruvate to oxaloacetate which serves as an important anaplerotic reaction to replenish citric acid cycle intermediates. In most organisms, the PC-catalyzed reaction is allosterically activated by acetyl-coenzyme A. It has previously been reported that vertebrate PC can catalyze the hydrolysis of acetyl-CoA, offering a potential means for the enzyme to attenuate its allosteric activation.
View Article and Find Full Text PDFJ Parasitol
December 2024
Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2.
Completing parts of trematode life cycles in the laboratory is a useful way to obtain experimentally infected hosts and identify how specific aspects of parasitism influence host ecology and behavior. However, a lack of knowledge about host specificity and other factors that influence prevalence can hamper those efforts. Echinostoma trivolvis lineage c is a genetically distinct member of the E.
View Article and Find Full Text PDFGeorgian Med News
October 2024
1Laboratory of General Microbiology, George Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia.
Stenotrophomonas maltophilia is a highly adaptable gram-negative bacteria, demonstrating resilience in metal-contaminated environment, which makes it a key subject for understanding microbial survival under heavy metal stress. This study investigates the effects of cadmium ions (Cd²⁺) on the growth dynamics, cadmium uptake, and bacteriophage vB_Stm18-host interactions, with implications for environmental microbiology and applied biotechnology. Growth analysis revealed that S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!