The Ti-Mn system revisited: experimental investigation and thermodynamic modelling.

Phys Chem Chem Phys

Institute of Materials Chemistry and Research, University of Vienna, Währingerstraße 42, A-1090 Vienna, Austria. and Christian Doppler Laboratory for Thermoelectricity, Vienna, Austria.

Published: August 2016

As the Ti-Mn phase diagram is part of numerous ternary and higher order systems of technological importance, the present paper defines phase relations which have been experimentally established throughout this work from 800 °C to the melting range based on Differential Thermal Analyses (DTA), X-ray powder diffraction, metallography and Electron Probe Micro Analysis (EPMA) techniques on ∼50 alloys, which were prepared by arc melting or high frequency melting under high purity argon starting from freshly cleaned metal ingots. Novel compounds were identified and reaction isotherms were redefined accordingly. In the Ti-rich region a novel compound TiMn was detected, sandwiched between the known phases: TiMn1-x (∼45 at% Mn) and TiMn1+x (∼55 at% Mn). In the Mn-rich region the hitherto unknown crystal structure of TiMn∼3 was solved from X-ray single crystal diffraction data and found to be of a unique structure type Ti6(Ti1-xMnx)6Mn25 (x = 0.462; space group Pbam (#55); a = 0.79081(3) nm, b = 2.58557(9) nm, c = 0.47931(2) nm), which consists of two consecutive layers of the hexagonal MgZn2-type Laves phase (TiMn2) and a combined layer of alternate structure blocks of MgZn2 type and Zr4Al3 type. Whereas TiMn can be considered as a line compound (solubility range <∼1 at%), the homogeneity regions of the Ti-Mn compounds are significant (determined by EPMA): TiMn1-x (44.0 to 46.6 at% Mn), TiMn1+x (54.6 to 56.3 at% Mn), Ti1+xMn2-x (MgZn2-type, 59 to 69 at% Mn at 1000 °C: -0.08 < x < 0.23), TiMn∼3 (unique type; 74 to 76.5 at% Mn) and TiMn∼4 (R-phase: Ti8(TixMn1-x)6Mn39, 80 to 84 at% Ti). Supported by ab initio calculations of the ground state energy for the Laves phase, the new experimental results enabled thermodynamic modelling of the entire Ti-Mn phase diagram providing a complete and novel set of thermodynamic data thus providing a sound basis for future thermodynamic predictions of higher order Ti-Mn-X-Y systems.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp04542aDOI Listing

Publication Analysis

Top Keywords

melting high
8
ti-mn system
4
system revisited
4
revisited experimental
4
experimental investigation
4
investigation thermodynamic
4
thermodynamic modelling
4
modelling ti-mn
4
ti-mn phase
4
phase diagram
4

Similar Publications

YOLOSeg with applications to wafer die particle defect segmentation.

Sci Rep

January 2025

Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei City, 243, Taiwan.

This study develops the you only look once segmentation (YOLOSeg), an end-to-end instance segmentation model, with applications to segment small particle defects embedded on a wafer die. YOLOSeg uses YOLOv5s as the basis and extends a UNet-like structure to form the segmentation head. YOLOSeg can predict not only bounding boxes of particle defects but also the corresponding bounding polygons.

View Article and Find Full Text PDF

Upcycling polynorbornene derivatives into chemically recyclable multiblock linear and thermoset plastics.

Angew Chem Int Ed Engl

January 2025

Colorado State University, Chemistry and Biochemistry, 301 W. Pitkin Street, 215 UCB, 80523, United States, 80523, Fort Collins, UNITED STATES OF AMERICA.

Synthetic polymers have found widespread use with functional lifetimes from seconds to decades. However, the lack of end-of-life treatment for these plastics is causing a significant environmental and human health crisis due to their persistence and bioaccumulation. Upcycling post-consumer plastic waste to products with inherent recyclability is an attractive strategy to tackle this problem, as it can broaden the range of accessible materials and uncover unprecedented features while dealing with current plastic waste.

View Article and Find Full Text PDF

Detecting freezing of gait: A comprehensive toolkit for enhanced Parkinson's assessment.

Parkinsonism Relat Disord

January 2025

Chulalongkorn Centre of Excellence for Parkinson's Disease & Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, 10330, Thailand. Electronic address:

Introduction: Detecting Freezing of Gait (FOG) poses challenges, with the subjective 6-item FOG Questionnaire relying solely on patient perception. We aim to create a holistic FOG Detection Toolkit combining subjective and objective elements (descriptions, images, and videos) to improve FOG detection precision.

Methods: Development of the FOG Detection Toolkit involved a detailed cover sheet on FOG and its triggers, along with video exemplars and a 4-item FOG-specific self-assessment questionnaire, all rigorously validated.

View Article and Find Full Text PDF

A series of biomass-based linear aliphatic polyesters are synthesized by combining sebacic acid (SA) (C10 diacid) and 1,18-octadecanedioic acid (OA) (C18 diacid) with a series of diols with varied alkyl chain lengths (C2 to C10 diols). SA and OA are obtainable from castor oil and palm oil, respectively. The reaction extent (polymerization extent) is high (≥96%) in all cases, and the number-average molecular weight (M) is 10 000-43 000 g mol after purification.

View Article and Find Full Text PDF

Eutectogels are recently emerged as promising alternatives to hydrogels owing to their good environmental stability derived from deep eutectic solvents (DES). However, construction of competent eutectogels with both high conductivity and mechanical toughness is still difficult to achieve yet highly demanded. In this work, new LMNP-PEDOT-CMC-AA (LPCA) eutectogels are prepared using acrylic acid (AA) and carboxymethylcellulose sodium (CMC) as polymeric networks, liquid metal nanoparticle-poly(3,4-ethylenedioxythiophene) (LMNP-PEDOT) are added as multifunctional soft fillers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!