SOX9 regulates expression of the male fertility gene Ets variant factor 5 (ETV5) during mammalian sex development.

Int J Biochem Cell Biol

Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, Australia; Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia. Electronic address:

Published: October 2016

AI Article Synopsis

  • Dysregulation of the SRY-box 9 (SOX9) gene in humans can cause disorders of sex development, while knock-out of Sox9 in mice can lead to XY sex reversal and defects in sperm cell development.
  • Sox9 plays a crucial role in the differentiation of Sertoli cells which are vital for the growth and maintenance of other testicular cell types, and this study identifies Ets variant factor 5 (ETV5) as a key gene regulated by SOX9 that is important for maintaining spermatogonial stem cell niches.
  • The research shows that SOX9 directly activates ETV5 expression through a specific regulatory region, highlighting its significance in the control of male fertility.

Article Abstract

In humans, dysregulation of the sex determining gene SRY-box 9 (SOX9) leads to disorders of sex development (DSD). In mice, knock-out of Sox9 prior to sex determination leads to XY sex reversal, while Sox9 inactivation after sex determination leads to spermatogenesis defects. SOX9 specifies the differentiation and function of Sertoli cells from somatic cell precursors, which then orchestrate the development and maintenance of other testicular cell types, largely through unknown mechanisms. Here, we describe a novel testicular target gene of SOX9, Ets variant factor 5 (ETV5), a transcription factor responsible for maintaining the spermatogonial stem cell niche. Etv5 was highly expressed in wild-type XY but not XX mouse fetal gonads, with ETV5 protein localized in the Sertoli cells, interstitial cells and germ cells of the testis. In XY Sox9 knock-out gonads, Etv5 expression was strongly down-regulated. Similarly, knock-down of SOX9 in the human Sertoli-like cell line NT2/D1 caused a decrease in ETV5 gene expression. Transcriptomic analysis of NT2/D1 cells over-expressing SOX9 showed that ETV5 expression was increased in response to SOX9. Moreover, chromatin immunoprecipitation of these cells, as well as of embryonic mouse gonads, showed direct binding of SOX9 to ETV5 regulatory regions. We demonstrate that SOX9 was able to activate ETV5 expression via a conserved SOX site in the 5' regulatory region, mutation of which led to loss of activation. In conclusion, we present a novel target gene of SOX9 in the testis, and suggest that SOX9 regulation of ETV5 contributes to the control of male fertility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biocel.2016.08.005DOI Listing

Publication Analysis

Top Keywords

sox9
14
etv5 expression
12
etv5
10
male fertility
8
ets variant
8
variant factor
8
factor etv5
8
sex development
8
sex determination
8
determination leads
8

Similar Publications

Non-cryo and hypothermic preservations are two available options for short-term storage of living cells. For long-term cell storage, cryopreservation is an essential procedure as it prolongs the storage time, allowing for the transport and testing of cells, as well as the establishment of cell banks. But it is unclear whether cryopreservation reduces the therapeutic effects of human umbilical cord mesenchymal stem cells (hucMSCs) on osteoarthritis (OA).

View Article and Find Full Text PDF

Backgrounds: Renal interstitial fibrosis (RIF) constitutes the ultimate pathological alteration in nearly all chronic kidney diseases (CKD). Mesenchymal stem cell conditioned medium (MSC-CM) exhibits an alleviating impact on renal fibrosis; however, the underlying mechanism remains unclear. The objective of this study was to explore whether MSC-CM regulates the expression of α-smooth muscle actin (α-SMA), Transforming growth factor-β1 (TGF-β1), Hypoxia-inducible factor-1α (HIF-1α), Nuclear receptor coactivators (NCOA1), and SRY-related high mobility (Sox9).

View Article and Find Full Text PDF

Matrix-bound vesicles (MBVs), an integral part of the extracellular matrix (ECM), are emerging as pivotal factors in ECM-driven molecular signaling. This study is the first to report the isolation of MBVs from porcine arterial endothelial cell basement membranes (A-MBVs) and thyroid cartilage (C-MBVs), the latter serving as a negative control due to its minimal vascular characteristics. Using Transmission Electron Microscopy (TEM), Nano-Tracking Analysis (NTA), Electrochemical Impedance Spectroscopy (EIS), and Atomic Force Microscopy (AFM), we orthogonally characterized the isolated MBVs.

View Article and Find Full Text PDF

Dandelion extract suppresses the stem-like properties of triple-negative breast cancer cells by regulating CUEDC2/β-catenin/OCT4 signaling axis.

J Ethnopharmacol

January 2025

Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Integration of Chinese and Western Medicine, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China. Electronic address:

Ethnopharmacological Relevance: Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer, featuring a high proportion of cancer stem cells (CSCs) and the poorest clinical outcomes. Taraxacum mongolicum Hand. -Mazz.

View Article and Find Full Text PDF

Dietary fermented mixed ingredient product enhances growth performance and intestinal stem cell-mediated epithelial regeneration through Wnt/β-catenin pathway in layer chicks.

Poult Sci

January 2025

College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China. Electronic address:

This study aimed to investigate the effects of dietary supplements of fermented mixed ingredient product (FMIP) on the growth performance, intestinal health, and immune performance of layer hens during the brooding period. Four hundred eighty healthy one-day-old layer chicks were randomly divided into four groups (six replicates/group, twenty hens/replicate) and were fed with different experimental diets for eight weeks (from day 1 to day 56): (1) Corn-soybean-base diet (CON); (2) Chlortetracycline group (CTC; CON diet supplemented with 0.5g/kg chlortetracycline); (3) 4 % fermented mixed ingredient product (4 % FMIP); (4) 8 % fermented mixed ingredient product (8 % FMIP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!