Defining a new aggressiveness classification and using NFATc1 localization as a prognostic factor in cherubism.

Hum Pathol

INSERM, UMRS 1138, Centre de Recherche de Cordeliers, Molecular Oral Pathology, 75006 Paris, France; Université Paris Descartes, 75006 Paris, France; APHP, Necker Enfants Malades, Service de Chirurgie Maxillo-Faciale et Plastique, 75015 Paris, France; APHP, CRMR des Malformations Rares de la Face et de la Cavité Buccale, 75015 Paris, France.

Published: December 2016

Cherubism is a rare genetic disease characterized by bilateral giant cell reparative granuloma of the jaws consisting of a fibrotic stroma with giant multinucleated cells (GMCs) and osteoclastic features. Cherubism severity is highly variable, and recurrence after surgery is the most important risk. Currently, there are no prognostic indicators. The aims of this study were to evaluate the osteoclastogenesis phenotype by histologic examination of nuclear factor of activated T cells 1 (NFATc1) localization and tartrate-resistant acid phosphatase (TRAP) activity and to correlate the results to disease aggressiveness to define prognostic indicators. Based on cherubism evolution 1 year after surgery, 3 classes of cherubism aggressiveness were identified: mild (group A), moderate (group B), and severe (group C). Histologically, in grade A and B cherubism lesions, GMCs were negative for both TRAP activity and NFATc1 nuclear localization. In contrast, in grade C cherubism lesions, GMCs were all positive for TRAP activity and NFATc1 nuclear localization and displayed osteoclast-like features. Other histopathologic findings were not different among the 3 groups. Our results establish that TRAP activity and NFTAc1 nuclear localization are associated with aggressive cherubism and therefore could be added to routine pathologic examination to aid in prognosis and management of the disease. The finding of NFATc1 nuclear localization in aggressive tumors supports the addition of anticalcineurin treatment to the therapeutic arsenal for cherubism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.humpath.2016.07.019DOI Listing

Publication Analysis

Top Keywords

trap activity
16
nuclear localization
16
nfatc1 nuclear
12
cherubism
9
nfatc1 localization
8
prognostic indicators
8
grade cherubism
8
cherubism lesions
8
lesions gmcs
8
activity nfatc1
8

Similar Publications

Purpose: This study explores the potential interaction of brolucizumab with platelets and its effects on platelet activation and reactivity, crucial in retinal vasculitis and retinal vascular occlusion. Safety concerns remain of interest, although brolucizumab showed superior retinal efficacy and reduced injection frequency compared to other licensed anti-VEGF agents.

Methods: Resting and activated platelets of healthy volunteers were pretreated with brolucizumab at the following concentrations 0.

View Article and Find Full Text PDF

Artificial synapses for neuromorphic computing have been increasingly highlighted, owing to their capacity to emulate brain activity. In particular, solid-state electrolyte-gated electrodes have garnered significant attention because they enable the simultaneous achievement of outstanding synaptic characteristics and mass productivity by adjusting proton migration. However, the inevitable interface traps restrict the protons at the channel-electrolyte interface, resulting in the deterioration of synaptic characteristics.

View Article and Find Full Text PDF

Chrysoeriol: a natural RANKL inhibitor targeting osteoclastogenesis and ROS regulation for osteoporosis therapy.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

The Key Laboratory of Spine and Spinal Cord Disease of Jiangxi Province, Nanchang, 330006, China.

Chrysoeriol (CHE) is a naturally occurring compound with established anti-inflammatory and anti-tumor effects. This study examines its potential role in regulating osteoclast differentiation and activity, both of which are crucial for bone remodeling. Computational docking revealed high binding affinity between CHE and RANKL, specifically at the Lys-181 residue of RANKL, suggesting potential inhibitory interactions on osteoclastogenesis.

View Article and Find Full Text PDF

Perfluorooctanoic acid and its alternatives disrupt the osteogenesis and osteoclastogenesis balance: Evidence from the effects on cell differentiation process.

Sci Total Environ

January 2025

Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing, China. Electronic address:

In the present study, we investigated the effects of a representative of the per- and polyfluoroalkyl substance (PFAS) chemical group, namely perfluorooctanoic acid (PFOA), and its alternatives (perfluorobutanoic acid [PFBA] and the hexafluoropropylene oxide dimer acid [GenX]) on bone homeostasis, a process that mainly depends on osteoblast (OB) and osteoclast (OC) activities at the cellular level. C3H10T1/2 cells and bone marrow macrophages (BMMs) were respectively induced into OBs and OCs, and treated with PFOA, PFBA, and GenX at doses of 0.25, 2.

View Article and Find Full Text PDF

The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!