Patched Receptors Sense, Interpret, and Establish an Epidermal Hedgehog Signaling Gradient.

J Invest Dermatol

Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia. Electronic address:

Published: January 2017

By using the sensitivity of single-molecule fluorescent in situ hybridization, we have precisely quantified the levels and defined the temporal and spatial distribution of Hedgehog signaling activity during embryonic skin development and discovered that there is a Hedgehog signaling gradient along the proximal-distal axis of developing hair follicles. To explore the contribution of Hedgehog receptors Ptch1 and Ptch2 in establishing the epidermal signaling gradient, we quantitated the level of pathway activity generated in Ptch1- and Ptch1;Ptch2-deficient skin and defined the contribution of each receptor to regulation of the levels of Hedgehog signaling identified in wild-type skin. Moreover, we show that both the cellular phenotype and level of pathway activity featured in Ptch1;Ptch2-deficient cells faithfully recapitulates the Peak level of endogenous Hedgehog signaling detected at the base of developing follicles, where the concentration of endogenous Shh is predicted to be highest. Taken together, these data show that both Ptch1 and Ptch2 play a crucial role in sensing the concentration of Hedgehog ligand and regulating the appropriate dose-dependent response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2016.06.632DOI Listing

Publication Analysis

Top Keywords

hedgehog signaling
16
signaling gradient
8
ptch1 ptch2
8
level pathway
8
pathway activity
8
hedgehog
7
signaling
5
patched receptors
4
receptors sense
4
sense interpret
4

Similar Publications

The inhibitory effect of L. on adipocyte differentiation can be enhanced by lactic acid bacteria (LAB) fermentation. In this study, we assessed the cellulose resolution, L.

View Article and Find Full Text PDF

Predicting hepatocellular carcinoma outcomes and immune therapy response with ATP-dependent chromatin remodeling-related genes, highlighting MORF4L1 as a promising target.

Cancer Cell Int

January 2025

Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.

Background: Hepatocellular carcinoma (HCC) continues to be a major cause of cancer-related death worldwide, primarily due to delays in diagnosis and resistance to existing treatments. Recent research has identified ATP-dependent chromatin remodeling-related genes (ACRRGs) as promising targets for therapeutic intervention across various types of cancer. This development offers potential new avenues for addressing the challenges in HCC management.

View Article and Find Full Text PDF

The study aimed to understand the impact of the sonic-hedge signal pathway (SHH) on mouse neural stem cells. We manipulated the pathway using purmorphamine (Pur) and Gant 61 and observed the effects on cell viability, neurosphere formation, and gene expression. We found that activating the SHH pathway with Pur increased cell viability, neurosphere formation, and the expression of specific genes, promoting the differentiation of neural stem cells into mature cells.

View Article and Find Full Text PDF

Oral Cancer Stem Cells: A Comprehensive Review of Key Drivers of Treatment Resistance and Tumor Recurrence.

Eur J Pharmacol

January 2025

Department of Conservative Dentistry & Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India. Electronic address:

Oral squamous cell carcinoma (OSCC) remains a major cause of morbidity and mortality worldwide with high recurrence rates and resistance to conventional therapies. Recent studies have highlighted the pivotal role of oral cancer stem cells (OCSCs) in driving treatment resistance and tumor recurrence. OCSCs possess unique properties, including self-renewal, differentiation potential, and resistance to chemotherapy and radiotherapy, which contribute to their ability to survive treatment and initiate tumor relapse.

View Article and Find Full Text PDF

Shh Protects the Injured Spinal Cord in Mice by Promoting the Proliferation and Inhibiting the Apoptosis of Nerve Cells via the Gli1-TGF-β1/ERK Axis.

Cell Biochem Funct

January 2025

Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Spinal cord injury (SCI) is a common neurological trauma that cannot be completely cured with surgical techniques and medications. In this study, we established a mouse SCI model and used an adeno-associated virus (AAV) to achieve the high expression of sonic hedgehog (Shh) at the injury site to further investigate the therapeutic effect and mechanism of Shh on SCI. The results of the present study show that Shh may promote motor function recovery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!