Here, it is shown three-step investigative procedures aiming to improve pentose-rich fermentations performance, involving a simple system for elevated mass production by Scheffersomyces stipitis (I), cellular recycle batch fermentations (CRBFs) at high cell density using two temperature strategies (fixed at 30°C; decreasing from 30 to 26°C) (II), and a short-term adaptation action seeking to acclimatize the microorganism in xylose rich-media (III). Cellular propagation provided 0.52gdrycellweightgRS(-1), resulting in an expressive value of 45.9gdrycellweightL(-1). The yeast robustness in CRBF was proven by effective ethanol production, reaching high xylose consumption (81%) and EtOH productivity (1.53gL(-1)h(-1)). Regarding the short-term adaptation, S. stipitis strengthened its robustness, as shown by a 6-fold increase in xylose reductase (XR) activity. The short fermentation time (20h for each batch) and the fermentation kinetics for ethanol production from xylose are quite promising.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2016.07.102DOI Listing

Publication Analysis

Top Keywords

scheffersomyces stipitis
8
batch fermentations
8
high cell
8
cell density
8
short-term adaptation
8
ethanol production
8
xylose
5
bioethanol production
4
production recycled
4
recycled scheffersomyces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!