Microglia in the brain show distinctive phenotypes that serve different functions. In particular, M2-polarized microglia are anti-inflammatory and phagocytic cells that serve a restorative function. In this study, we investigated whether mesenchymal stem cells (MSCs) enhance the phagocytic clearance of α-synuclein via M2 microglia polarization, and thereby exert neuroprotective effects in α-synuclein-enriched experimental models and patients with multiple system atrophy (MSA). Treatment of BV2 cells with α-synuclein induced an inflammatory phenotype, whereas co-culture of α-synuclein-treated BV2 cells with MSCs induced an anti-inflammatory M2 phenotype, with decreased α-synuclein levels and increased lysosomal activity, leading to greater viability of neuronal cells co-cultured with BV2 cells. Using IL-4 receptor siRNA in BV2 cells and IL-4 siRNA in MSCs, we found that M2 microglia polarization was induced by IL-4 secreted from MSCs. In α-synuclein-inoculated mice, MSC treatment induced M2 microglia polarization decreased α-synuclein levels, and had a prosurvival effect on neurons. Using IL-4 and IL-4 receptor knockout mice, we further confirmed that IL-4 secreted from MSCs induced phagocytic clearance of α-synuclein through M2 microglia polarization. Next, we found that the cerebrospinal fluid (CSF) from MSC-transplanted MSA patients induced microglia M2 polarization and had a prosurvival effect via enhanced clearance of α-synuclein in α-synuclein-treated BV2 cells. Finally, a serial CSF study demonstrated that changes in oligomeric α-synuclein from baseline to 1-year follow-up were greater in the CSF of MSC-transplanted MSA patients than in placebo-transplanted MSA patients. These findings indicate that MSCs exert a neuroprotective effect via the clearance of extracellular α-synuclein by controlling microglia M2 polarization, suggesting that MSCs could be used as a disease-modifying therapy for patients with α-synucleinopathies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00401-016-1605-6 | DOI Listing |
Int J Surg
January 2025
Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China.
Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.
Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.
Pharmaceutics
December 2024
Department of Pharmacy, College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.
Background/objectives: Aronia extract or its active compounds, especially anthocyanin, have shown potential for Alzheimer's disease (AD)-related pathologies, including neuroinflammation, fibrillogenesis of amyloid beta (Aβ), and cognitive impairment. However, there was still concern about their structural instability in vivo and in vitro. To solve the instability of anthocyanins, we combined aronia bioactive factions (ABFs) and alginic acid via electrostatic molecular interactions and created an ABF-alginic acid nanocomplex (AANCP).
View Article and Find Full Text PDFNutrients
January 2025
Department of Management, Sapienza University of Rome, 00161 Rome, Italy.
Background/objectives: Inflammation and oxidative stress are the main pathogenetic pathways involved in the development of several chronic degenerative diseases. Our study is aimed at assessing the antioxidant and anti-inflammatory activity of hydroalcoholic extracts obtained from wheat and its derivatives.
Methods: The content of total phenolic and total flavonoid compounds and antioxidant activity were carried out by ABTS and DPPH assays.
Molecules
January 2025
Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea.
Inflammation has always been considered a trigger or consequence of neurodegenerative diseases, and the inhibition of inflammation in the central nervous system can effectively protect nerve cells. Several studies have indicated that various natural products inhibit neuroinflammation. Among these, Antarctic fungal metabolites have pharmacological activities and a developmental value.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!