Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants.

Arch Biochem Biophys

Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.

Published: March 2017

The Kelch-like ECH associated protein 1 (Keap1) is a component of a Cullin3-based Cullin-RING E3 ubiquitin ligase (CRL) multisubunit protein complex. Within the CRL, homodimeric Keap1 functions as the Cullin3 adaptor, and importantly, it is also the critical component of the E3 ligase that performs the substrate recognition. The best-characterized substrate of Keap1 is transcription factor NF-E2 p45-related factor 2 (Nrf2), which orchestrates an elaborate transcriptional program in response to environmental challenges caused by oxidants, electrophiles and pro-inflammatory agents, allowing adaptation and survival under stress conditions. Keap1 is equipped with reactive cysteine residues that act as sensors for endogenously produced and exogenously encountered small molecules (termed inducers), which have a characteristic chemical signature, reactivity with sulfhydryl groups. Inducers modify the cysteine sensors of Keap1 and impair its ability to target Nrf2 for ubiquitination and degradation. Consequently, Nrf2 accumulates, enters the nucleus and drives the transcription of its target genes, which encode a large network of cytoprotective proteins. Here we summarize the early studies leading to the prediction of the existence of Keap1, followed by the discovery of Keap1 as the main negative regulator of Nrf2. We then describe the available structural information on Keap1, its assembly with Cullin3, and its interaction with Nrf2. We also discuss the multiple cysteine sensors of Keap1 that allow for detection of a wide range of endogenous and environmental inducers, and provide fine-tuning and tight control of the Keap1/Nrf2 stress-sensing response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5339396PMC
http://dx.doi.org/10.1016/j.abb.2016.08.005DOI Listing

Publication Analysis

Top Keywords

keap1
10
cysteine sensors
8
sensors keap1
8
nrf2
5
keap1 cysteine-based
4
cysteine-based mammalian
4
mammalian intracellular
4
intracellular sensor
4
sensor electrophiles
4
electrophiles oxidants
4

Similar Publications

Skin wrinkles result from a myriad of multifaceted processes involving intrinsic and extrinsic aging. To combat this effect, plant stem cells offer a renewable and eco-friendly source for various industries, including cosmeceuticals. (SM), which contains the bioactive compound Rosmarinic acid (RA) and has been proposed for its anti-wrinkle effect.

View Article and Find Full Text PDF

Bisphenol A (BPA), extensively utilized in the manufacture of epoxy resins and polycarbonate plastics, is prevalent in the environment. Its exposure has been associated with an increased risk of hepatic lesions; however, the underlying mechanisms and the spectrum of its effects remain poorly understood. This study investigates the role of the Keap1-Nrf2 signaling pathway in regulating BPA-induced hepatotoxicity in vivo using a rat model.

View Article and Find Full Text PDF

Microplastics (MPs) represent an emerging pollutant capable of entering the human body through the respiratory and digestive systems, thereby posing significant health risks. Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects multiple organ systems, often presenting with polyarticular joint manifestations. Despite its relevance, there is currently limited research on the impact of MPs on lupus arthritis.

View Article and Find Full Text PDF

Identification of Protein Hydrolysates from Sesame Meal and In Vivo Study of Their Gastric Mucosal Protective Effects.

Foods

December 2024

Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.

This study aimed to investigate the protective effects and defense mechanisms of a sesame meal protein hydrolysate against ethanol-induced acute gastric mucosal injury in mice. The target peptides in the hydrolysate were identified by LC-MS/MS, the activity was predicted by PeptideRanker, and the KM mice were orally administered distilled water, a sesame peptide, and omeprazole for 24 consecutive days. Acute gastric mucosal injury was then induced in mice with 70% ethanol, except for the CK group.

View Article and Find Full Text PDF

Melatonin Improves HO-Induced Oxidative Stress in Sertoli Cells Through Nrf2-Keap1 Signaling Pathway.

Genes (Basel)

November 2024

Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.

: Oxidative stress in the testicles of male livestock can cause reduced fertility. Melatonin is a natural product with antioxidant effects, but its specific antioxidant mechanism is still unclear. This study used calf testicular Sertoli cells as materials to explore the mechanism by which melatonin alleviates the oxidative stress of Sertoli cells, laying a foundation for improving the fertility of bulls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!