FOXP2 Expression in Frontotemporal Lobar Degeneration-Tau.

J Alzheimers Dis

Institute of Neuropathology, Bellvitge University Hospital-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.

Published: September 2016

FOXP2 is altered in a variety of language disorders. We found reduced mRNA and protein expression of FOXP2 in frontal cortex area 8 in Pick's disease, and frontotemporal lobar degeneration-tau linked to P301L mutation presenting with language impairment in comparison with age-matched controls and cases with parkinsonian variant progressive supranuclear palsy. Foxp2 mRNA and protein are also reduced with disease progression in the somatosensory cortex in transgenic mice bearing the P301S mutation in MAPT when compared with wild-type littermates. Our findings support the presence of FOXP2 expression abnormalities in sporadic and familial frontotemporal degeneration tauopathies.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-160274DOI Listing

Publication Analysis

Top Keywords

foxp2 expression
8
frontotemporal lobar
8
lobar degeneration-tau
8
mrna protein
8
foxp2
5
expression frontotemporal
4
degeneration-tau foxp2
4
foxp2 altered
4
altered variety
4
variety language
4

Similar Publications

Reliable and systematic experimental access to diverse cell types is necessary for understanding the neural circuit organization, function, and pathophysiology of the human brain. Methods for targeting human neural populations are scarce and currently center around identifying and engineering transcriptional enhancers and viral capsids. Here we demonstrate the utility of CellREADR, a programmable RNA sensor-effector technology that couples cellular RNA sensing to effector protein translation, for accessing, monitoring, and manipulating specific neuron types in human cortical tissues.

View Article and Find Full Text PDF

Tubular FoxP2 and Kidney Fibrosis.

J Am Soc Nephrol

December 2024

Division of Nephrology, Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong.

Article Synopsis
  • The study investigates the role of the transcription factor Foxp2 in kidney fibrosis, a key process leading to chronic kidney disease (CKD) and kidney failure, highlighting its correlation with epithelial-to-mesenchymal transition (EMT).
  • Analysis of human kidney biopsies and experiments in genetically modified mice demonstrate that increased Foxp2 expression is associated with various forms of CKD, and its deletion reduces inflammation and fibrosis in kidney tissue.
  • Findings reveal that Foxp2 influences key cellular mechanisms, including the regulation of TGF-β signaling and cell cycle, ultimately affecting the progression of kidney fibrosis through the modulation of target genes related to cell growth and ECM production.
View Article and Find Full Text PDF

Mu-opioid receptor knockout on Foxp2-expressing neurons reduces aversion-resistant alcohol drinking.

Pharmacol Biochem Behav

December 2024

Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA. Electronic address:

Mu-opioid receptors (MORs) in the amygdala and striatum are important in addictive and rewarding behaviors. The transcription factor Foxp2 is a genetic marker of intercalated (ITC) cells in the amygdala and a subset of striatal medium spiny neurons (MSNs), both of which express MORs in wild-type mice and are neuronal subpopulations of potential relevance to alcohol-drinking behaviors. For the current series of studies, we characterized the behavior of mice with genetic deletion of the MOR gene Oprm1 in Foxp2-expressing neurons (Foxp2-Cre/Oprm1).

View Article and Find Full Text PDF
Article Synopsis
  • - The study identifies and categorizes four major subsets of V1 interneurons in mice based on their development, genetic tracing, and connections with motoneurons and muscle afferents.
  • - It highlights that the timing of neurogenesis (when the neurons are born) does not necessarily determine their targeting to motoneurons, as seen with different functions of early and late born interneurons.
  • - The research emphasizes the complexity of the Foxp2-V1 interneuron subgroup, which plays a critical role in inhibitory pathways and has diverse functions, thereby improving our understanding of the interneuron's role in motor control.
View Article and Find Full Text PDF

Rare de novo heterozygous loss-of-function SETBP1 variants lead to a neurodevelopmental disorder characterized by speech deficits, indicating a potential involvement of SETBP1 in human speech. However, the expression pattern of SETBP1 in brain regions associated with vocal learning remains poorly understood, along with the underlying molecular mechanisms linking it to vocal production. In this study, we examined SETBP1 expression in the brain of male zebra finches, a well-established model for studying vocal production learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!