Iron Deprivation Induces Transcriptional Regulation of Mitochondrial Biogenesis.

J Biol Chem

From the Morgridge Institute for Research, Madison, Wisconsin 53715, the Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706

Published: September 2016

Mitochondria are essential organelles that adapt to stress and environmental changes. Among the nutrient signals that affect mitochondrial form and function is iron, whose depletion initiates a rapid and reversible decrease in mitochondrial biogenesis through unclear means. Here we demonstrate that, unlike the canonical iron-induced alterations to transcript stability, loss of iron dampens the transcription of genes encoding mitochondrial proteins with no change to transcript half-life. Using mass spectrometry, we demonstrate that these transcriptional changes are accompanied by dynamic alterations to histone acetylation and methylation levels that are largely reversible upon readministration of iron. Moreover, histone deacetylase inhibition abrogates the decreased histone acetylation observed upon iron deprivation and restores normal transcript levels at genes encoding mitochondrial proteins. Collectively, we demonstrate that deprivation of an essential nutrient induces transcriptional repression of organellar biogenesis involving epigenetic alterations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5076495PMC
http://dx.doi.org/10.1074/jbc.M116.727701DOI Listing

Publication Analysis

Top Keywords

iron deprivation
8
induces transcriptional
8
mitochondrial biogenesis
8
genes encoding
8
encoding mitochondrial
8
mitochondrial proteins
8
histone acetylation
8
iron
5
mitochondrial
5
deprivation induces
4

Similar Publications

Survival Strategies of : Adaptive Regulation of the Anti-Restriction Gene -H1 Under Stress Conditions.

Antibiotics (Basel)

November 2024

Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.

: The anti-restriction protein ArdA-H1, found in multiresistant (MRSA) strains from the ST239-SCCIII lineage, inhibits restriction-modification systems, fostering horizontal gene transfer (HGT) and supporting genetic adaptability and resistance. This study investigates the regulatory mechanisms controlling H1 expression in under various stress conditions, including acidic pH, iron limitation, and vancomycin exposure, and explores the roles of the Agr quorum sensing system. : The expression of H1 was analyzed in strains exposed to environmental stressors using real-time quantitative reverse transcription PCR.

View Article and Find Full Text PDF

Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.

Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.

View Article and Find Full Text PDF

Unlabelled: Ischemic stroke ranks as the second leading cause of global mortality and disability. Although reperfusion is crucial for salvaging brain tissue, it carries the risk of secondary injuries, such as ferroptosis. Gastrodin, a neuroprotective compound found in Chinese herbal medicine, may regulate this process.

View Article and Find Full Text PDF

The global rise of antibiotic resistance calls for new drugs against bacterial pathogens. A common approach is to search for natural compounds deployed by microbes to inhibit competitors. Here, we show that the iron-chelating pyoverdines, siderophores produced by environmental spp.

View Article and Find Full Text PDF

Cerebral ischemia/reperfusion injury is one of the main causes of neuronal damage. Neuron ferroptosis and microglia polarization are considered as critical processes during cerebral ischemia/reperfusion. Adipocyte enhancer-binding protein 1 (AEBP1) usually acts as a transcriptional repressor which is involved in various diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!