Alzheimer's disease (AD) is the most prevalent cause of dementia in the aging population worldwide. SIRT1 deacetylation of histones and transcription factors impinge on multiple neuronal and non-neuronal targets, and modulates stress response, energy metabolism and cellular senescence/death pathways. Collectively, SIRT1 activity could potentially affect multiple aspects of hippocampal and cortical neuron function and survival, thus modifying disease onset and progression. In this review, the known and potential mechanisms of action of SIRT1 with regard to AD, and its potential as a therapeutic target, are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1515/revneuro-2016-0023DOI Listing

Publication Analysis

Top Keywords

therapeutic target
8
alzheimer's disease
8
sirt1
4
sirt1 therapeutic
4
target alzheimer's
4
disease alzheimer's
4
disease prevalent
4
prevalent dementia
4
dementia aging
4
aging population
4

Similar Publications

The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.

View Article and Find Full Text PDF

The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.

View Article and Find Full Text PDF

Development of a novel molecular probe for visualizing mesothelin on the tumor via positron emission tomography.

Eur J Nucl Med Mol Imaging

January 2025

Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China.

Objectives: Mesothelin (MSLN) is an antigen that is overexpressed in various cancers, and its interaction with tumor-associated cancer antigen 125 plays a multifaceted role in tumor metastasis. The serum MSLN expression level can be detected using enzyme-linked immunosorbent assay; however, non-invasive visualization of its expression at the tumor site is currently lacking. Therefore, the aim of this study was to develop a molecular probe for imaging MSLN expression through positron emission tomography (PET).

View Article and Find Full Text PDF

Multiple myeloma (MM) is a bone-marrow-based cancer of plasma cells. Over the last 2 decades, marked treatment advances have led to improvements in the overall survival (OS) of patients with this disease. Key developments include the use of chemotherapy, immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies.

View Article and Find Full Text PDF

Background: Lung adenocarcinoma is one of the most common malignant tumors worldwide. Its complex molecular mechanisms and high tumor heterogeneity pose significant challenges for clinical treatment. The manganese ion metabolism family plays a crucial role in various biological processes, and the abnormal expression of the NUDT3 gene in multiple cancers has drawn considerable attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!