Objective: The round window membrane (RWM) encloses the round window, the opening into the scala tympani (ST) from the middle ear. During the course of acute otitis media (AOM), structural changes of the RWM can occur that potentially affect sound transmission into and out of the cochlea. The relationship between such structural changes and conductive hearing loss during AOM has remained unclear. The focus of the current study was to compare the thickness distribution across the RWM surface between normal ears and those with AOM in the chinchilla. We assessed the occurrence of AOM-associated histological changes in this membrane compared to uninfected control animals after AOM of two relatively short durations.
Material And Methods: AOM was induced by transbullar injection of the nontypeable Haemophilus influenzae strain 86-028NP into two groups of adult chinchillas (n = 3 each). Bullae were obtained from the two infected groups, at 4 days or 8 days post challenge. Structures and thickness of these RWMs were compared between the two infected treatment groups and to RWMs from uninfected control animals (n = 3) at seven different RWM locations.
Results: RWM thickness in infected chinchillas increased significantly at locations along the central line on the 4th day post bacterial challenge compared to values found for uninfected control animals. Lymphocyte infiltration and edema were the primary contributors to these thickness increases. No significant further increases in RWM thickness were observed when RWMs from chinchillas ears infected for 4 and 8 days were compared. Thickness and structural changes at the RWM lateral and medial areas were less visually obvious and not statistically significant among the three treatment groups. These latter RWM regions clearly were less affected during AOM than the central areas.
Conclusions: This histological study establishes that H. influenzae-induced AOM causes significant acute changes in chinchilla RWM structure that are characterized by region-specific increases in thickness. Our new morphological findings comparing normal and diseased chinchilla RWMs identify yet another biomechanical mechanism by which nontypeable H. influenzae may contribute to hearing loss in AOM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4978205 | PMC |
http://dx.doi.org/10.1016/j.ijporl.2016.06.049 | DOI Listing |
Eur Arch Otorhinolaryngol
January 2025
Vrije Universiteit Brussel, Brussels Health Centre, Brussels, Belgium.
Purpose: Cochlear implants (CI) are the most successful bioprosthesis in medicine probably due to the tonotopic anatomy of the auditory pathway and of course the brain plasticity. Correct placement of the CI arrays, respecting the inner ear anatomy are therefore important. The ideal trajectory to insert a cochlear implant array is defined by an entrance through the round window membrane and continues as long as possible parallel to the basal turn of the cochlea.
View Article and Find Full Text PDFElife
January 2025
Department of Mechanical Engineering, University of Rochester, Rochester, United States.
We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery.
View Article and Find Full Text PDFOtol Neurotol
January 2025
Department of Otolaryngology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Hypothesis: Extracochlear electric-acoustic stimulation (EAS) between the round window membrane and the basal part of the cochlear bone exhibits distinct auditory brainstem response (ABR) characteristics.
Background: The use of EAS in individuals with residual hearing is becoming increasingly common in clinical settings. Ongoing research has explored the characteristics of EAS-induced responses in hearing cochleae.
Front Neurol
December 2024
Department of Otorhinolaryngology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Objectives: Multiple studies have described the onset and variable incidence of postoperative acute vertigo following cochlear implant (CI) surgery. However, postoperative imaging has not yet been specifically evaluated with special focus on vertigo. The aim of this study is to assess the incidence and causes of new-onset, acute postoperative vertigo following CI surgery using cone beam computed tomography (CBCT).
View Article and Find Full Text PDFTissue Cell
December 2024
ENT Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt. Electronic address:
Background: Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Current solutions for SNHL, including hearing aids, cochlear implants, and hearing assistive devices, do not provide consistent results and fail to address the underlying pathology of hair cell and ganglion cell damage. Stem cell therapy is a cornerstone in regenerative medicine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!