Studies on transcriptional modulation after gamma radiation exposure in fish are limited. Cell cycle perturbations and expression of apoptotic genes were investigated in the fish, Catla catla after acute and protracted exposures to gamma radiation over a 90day period. Significant changes in gene expression were observed between day 1 and 90 post-exposure. Gamma radiation induced a significant down-regulation of target genes gadd45α, cdk1 and bcl-2 from day 1 to day 3 after protracted exposure, whereas it persists till day 6 upon acute exposure. From day 12 onwards, Gadd45α, cdk1 and bcl-2 genes were up-regulated following protracted exposure, indicating DNA repair, cell-cycle arrest and apoptosis. There exists a linear correlation between these genes (gadd45α - r=0.85, p=0.0073; cdk1 - r=0.86, p=0.0053; bcl-2 - r=0.89, p=0.0026) at protracted exposures. This is the first report on the dual role of bcl-2 gene in fish exposed to acute and protracted radiation and correlation among the aforementioned genes that work in concert to promote 'repair' and 'death' circuitries in fish blood cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aquatox.2016.07.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!