Naringin protects against HIV-1 protease inhibitors-induced pancreatic β-cell dysfunction and apoptosis.

Mol Cell Endocrinol

Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, P.O. Box X5401, Durban, South Africa. Electronic address:

Published: December 2016

AI Article Synopsis

  • The study explored how naringin, a compound from grapefruit, can protect pancreatic β-cells from damage caused by HIV-1 Protease Inhibitors (PIs) in a cell culture setting.
  • Experiments showed that PIs decreased insulin secretion and increased oxidative stress markers, but naringin (and glibenclamide) helped reduce this oxidative damage and improve cell health by restoring important cellular functions.
  • The findings suggest that naringin may be a beneficial nutritional supplement for patients on antiretroviral therapy to help prevent pancreatic dysfunction and related health issues.

Article Abstract

Introduction: The protective effects of grapefruit-derived naringin against HIV-1 Protease Inhibitors (PIs)-associated oxidative damage to pancreatic β-cells and apoptosis were investigated in RIN-5F cells in culture.

Methods: Cells in culture medium were challenged with 11-25 mM glucose with or without nelfinavir (1-10 μM), saquinavir (1-10 μM) and atazanavir (5-20 μM), respectively for 24 h to determine insulin secretion. The cells were further treated with nelfinavir (10 μM), saquinavir (10 μM), atazanavir (20 μM) with and without naringin or glibenclamide (10 μM) for 24 h to determine insulin secretion, lipid peroxidation, Superoxide Dismutase (SOD) activity, glutathione (GSH) levels, ATP production and caspase-3 and-9 activities, respectively.

Results: Glucose-dependent insulin secretion was significantly reduced by PIs in a concentration-dependent manner. Treatment with either naringin or glibenclamide significantly reduced lipid peroxidation, Superoxide Dismutase (SOD) activities and also increased glutathione (GSH) and ATP levels in the cells that were treated with PIs. Furthermore, naringin or glibenclamide significantly reduced caspase-3 and caspase-9 activities in cells that were treated with PIs.

Conclusions: PIs impair β-cell functions by increasing oxidative stress and apoptosis. Treatment with naringin protected RIN-5F cells from PI-induced oxidative damage and apoptosis. Our results therefore suggest that nutritional supplements with naringin could prevent pancreatic β-cell dysfunction and the attendant metabolic complications caused by PIs in patients on antiretroviral therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2016.07.041DOI Listing

Publication Analysis

Top Keywords

insulin secretion
12
cells treated
12
naringin glibenclamide
12
hiv-1 protease
8
pancreatic β-cell
8
β-cell dysfunction
8
oxidative damage
8
rin-5f cells
8
24 h determine
8
determine insulin
8

Similar Publications

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.

View Article and Find Full Text PDF

Glucose Metabolic Abnormalities and Their Interaction With Defective Phosphate Homeostasis in Tumor-induced Osteomalacia.

J Clin Endocrinol Metab

January 2025

Department of Endocrinology, Key Laboratory of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Dongcheng District, National Commission of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.

Context: Phosphate homeostasis was compromised in tumor-induced osteomalacia (TIO) due to increased fibroblast growth factor 23 (FGF23) secretion. Nevertheless, the glucose metabolic profile in TIO patients has not been investigated.

Objectives: This work aimed to clarify the glucose metabolic profiles in TIO patients and explore their interaction with impaired phosphate homeostasis.

View Article and Find Full Text PDF

The herbal extracts of four traditional plants; namely leaves, fruits leaves, and seeds, were identified for their main constituents using UHPLC/QTOF-MS/MS. Then, a pharmacology-based analysis and molecular docking verification were established targeting the evaluation of each individual herbal extract for their antidiabetic/anti-obesity potential besides their safety. Streptozotocin-induced diabetic rats were used to evaluate antiobesity and insulinotropic effects against insulin (10 U/Kg, IP) and metformin (100 mg/Kg, per oral) as standard regimens.

View Article and Find Full Text PDF

Type 2 diabetes: a sacrifice program handling energy surplus.

Life Metab

December 2024

Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai 200233, China.

Type 2 diabetes mellitus (T2DM) is closely associated with obesity, while interactions between the two diseases remain to be fully elucidated. To this point, we offer this perspective to introduce a set of new insights into the interpretation of T2DM spanning the etiology, pathogenesis, and treatment approaches. These include a definition of T2DM as an energy surplus-induced diabetes characterized by the gradual decline of β cell insulin secretion function, which ultimately aims to prevent the onset of severe obesity through mechanisms of weight loss.

View Article and Find Full Text PDF

Biphasic glucose-stimulated insulin secretion over decades: a journey from measurements and modeling to mechanistic insights.

Life Metab

February 2025

New Cornerstone Science Laboratory, State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, National Biomedical Imaging Center, The Beijing Laboratory of Biomedical Imaging, Peking-Tsinghua Center for Life Sciences, School of Future Technology, Peking University, Beijing 100871, China.

Glucose-stimulated insulin release from pancreatic β-cells is critical for maintaining blood glucose homeostasis. An abrupt increase in blood glucose concentration evokes a rapid and transient rise in insulin secretion followed by a prolonged, slower phase. A diminished first phase is one of the earliest indicators of β-cell dysfunction in individuals predisposed to develop type 2 diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!