Expression of recombinant proteins exerts stress on cell culture systems, affecting the expression of endogenous proteins, and contributing to the depletion of nutrients and accumulation of waste metabolites. In this work, 2D-DIGE proteomics was employed to analyze differential expression of proteins following stable transfection of a Chinese Hamster Ovary (CHO) cell line to constitutively express a heavy-chain monoclonal antibody. Thirty-four proteins of significant differential expression were identified and cross-referenced with cellular functions and metabolic pathways to identify points of cell stress. Subsequently, 1D-(1)H NMR metabolomics experiments analyzed cultures to observe nutrient depletion and waste metabolite accumulations to further examine these cell stresses and pathways. From among fifty metabolites tracked in time-course, eight were observed to be completely depleted from the production media, including: glucose, glutamine, proline, serine, cystine, asparagine, choline, and hypoxanthine, while twenty-three excreted metabolites were also observed to accumulate. The differentially expressed proteins, as well as the nutrient depletion and accumulation of these metabolites corresponded with upregulated pathways and cell systems related to anaplerotic TCA-replenishment, NADH/NADPH replenishment, tetrahydrofolate cycle C1 cofactor conversions, limitations to lipid synthesis, and redox modulation. A nutrient cocktail was assembled to improve the growth medium and alleviate these cell stresses to achieve a ∼75% improvement to peak cell densities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2016.07.027DOI Listing

Publication Analysis

Top Keywords

nmr metabolomics
8
2d-dige proteomics
8
differential expression
8
nutrient depletion
8
cell stresses
8
cell
7
proteins
5
omics approach
4
approach rational
4
rational feed
4

Similar Publications

Gualou-Xiebai-Banxia (GXB) decoction shows potential for treating myocardial ischemia (MI), although its underlying mechanism is not fully understood. In this study, a multimodal metabolomics approach, combining gas chromatography-mass spectrometry (GC-MS) and H-NMR, was employed to investigate the cardioprotective effects of GXB in a rat model of myocardial ischemia induced by ligation. ELISA assays and HE staining demonstrated that GXB effectively reduced myocardial injury, oxidative stress markers, and myocardial fibrosis.

View Article and Find Full Text PDF

Rising temperatures due to climate change may affect the quality of open-field cultivated processing tomatoes by altering the nutrient content. Bioinoculants are growing in popularity as a nature-based strategy to mitigate these environmental stresses. Untargeted quantitative NMR spectroscopy was leveraged to characterize the metabolome of tomato fruits exposed to abiotic stress during the year 2022, which was marked by unexpected high temperatures and low rainfall compared to the year 2021 with average conditions.

View Article and Find Full Text PDF

Coronary heart disease (CHD) is the leading cause of morbidity and mortality worldwide despite significant improvements in diagnostic modalities. Emerging evidence suggests that erythrocytes, or red blood cells (RBCs), are one of the most important contributors to the events implicated in atherosclerosis, although the molecular mechanisms behind it are under investigation. We used NMR-based lipidomic technology to investigate the RBC lipidome in patients with CHD compared to those with normal coronary arteries (NCAs), all angiographically documented, and its correlation with coronary artery stenosis.

View Article and Find Full Text PDF

Breast cancer is a cancer with global prevalence and a surge in the number of cases with each passing year. With the advancement in science and technology, significant progress has been achieved in the prevention and treatment of breast cancer to make ends meet. The scientific intradisciplinary subject of "metabolomics" examines every metabolite found in a cell, tissue, system, or organism from different sources of samples.

View Article and Find Full Text PDF

Hematological malignancies encompass a diverse array of subtypes, contributing to substantial heterogeneity that poses challenges in predicting clinical outcomes. Leveraging the capabilities of nuclear magnetic resonance holds substantial promise in the detection of serum biomarkers and individual metabolic alterations in patients. The study involved the analysis of the sera from patients with acute myeloid leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma to investigate the impacted metabolites and their associated pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!