Today most population genomic studies of nonmodel organisms either sequence a subset of the genome deeply in each individual or sequence pools of unlabelled individuals. With a step-by-step workflow, we illustrate how low-coverage whole-genome sequencing of hundreds of individually barcoded samples is now a practical alternative strategy for obtaining genomewide data on a population scale. We used a highly efficient protocol to generate high-quality libraries for ~6.5 USD from each of 876 Atlantic silversides (a teleost fish with a genome size ~730 Mb) that we sequenced to 1-4× genome coverage. In the absence of a reference genome, we developed a bioinformatic pipeline for mapping the genomic reads to a de novo assembled reference transcriptome. This provides an 'in silico' method for exome capture that avoids the complexities and expenses of using wet chemistry for target isolation. Using novel tools for analysis of low-coverage data, we extracted population allele frequencies, individual genotype likelihoods and polymorphism data for 2 504 335 SNPs across the exome for the 876 fish. To illustrate the use of the resulting data, we present a preliminary analysis of geographical patterns in the exome data and a comparison of complete mitochondrial genome sequences for each individual (constructed from the low-coverage data) that show population colonization patterns along the US east coast. With a total cost per sample of less than 50 USD (including sequencing) and ability to prepare 96 libraries in only 5 h, our approach adds a viable new option to the population genomics toolbox.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1755-0998.12593 | DOI Listing |
Methods Enzymol
January 2025
Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel. Electronic address:
Adenosine-to-Inosine (A-to-I) RNA editing is the most prevalent type of RNA editing, in which adenosine within a completely or largely double-stranded RNA (dsRNA) is converted to inosine by deamination. RNA editing was shown to be involved in many neurological diseases and cancer; therefore, detection of A-to-I RNA editing and quantitation of editing levels are necessary for both basic and clinical biomedical research. While high-throughput sequencing (HTS) is widely used for global detection of editing events, Sanger sequencing is the method of choice for precise characterization of editing site clusters (hyper-editing) and for comparing levels of editing at a particular site under different environmental conditions, developmental stages, genetic backgrounds, or disease states.
View Article and Find Full Text PDFUnlabelled: Metabolic syndrome and excessive alcohol consumption result in liver injury and fibrosis, which is characterized by increased collagen production by activated Hepatic Stellate Cells (HSCs). LARP6, an RNA-binding protein, was shown to facilitate collagen production. However, LARP6 expression and functionality as a regulator of fibrosis development in a disease relevant model remains elusive.
View Article and Find Full Text PDFDrug discovery continues to face a staggering 90% failure rate, with many setbacks occurring during late-stage clinical trials. To address this challenge, there is an increasing focus on developing and evaluating new technologies to enhance the "design" and "test" phases of antibody-based drugs (e.g.
View Article and Find Full Text PDFPhytoKeys
January 2025
University Museum, The University of Bergen, Postboks 7800, N-5020, Bergen, Norway The University of Bergen Bergen Norway.
Plant phylogenetics has been revolutionised in the genomic era, with target capture acting as the primary workhorse of most recent research in the new field of phylogenomics. Target capture (aka Hyb-Seq) allows researchers to sequence hundreds of genomic regions (loci) of their choosing, at relatively low cost per sample, from which to derive phylogenetically informative data. Although this highly flexible and widely applicable method has rightly earned its place as the field's standard, it does not come without its challenges.
View Article and Find Full Text PDFAME Case Rep
October 2024
Division of Respiratory and Critical Care Medicine, Jiangyin People's Hospital Affiliated to Nantong, Jiangyin, China.
Background: There are hundreds of pathogens that cause lung infections. Compared to infections caused by a single pathogen, mixed infections account for a larger proportion of pulmonary infections and have a more severe clinical presentation, while treatment options differ between the two. We aimed to explore the advantages of metagenomic next-generation sequencing (mNGS) in the diagnosis and treatment of mixed infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!