Objectives: Our previous studies indicated that highly selective κ opioid receptor agonists could protect the brain, indicating an important role of κ opioid receptor agonist in brain ischemia. In this study, we investigated the role and related mechanisms of κ opioid receptor agonists in brain ischemia in a middle cerebral artery occlusion mouse model.
Design: Animal model.
Setting: Laboratory.
Subjects: The middle cerebral artery occlusion model was established by 120 minutes of ischemia followed by 24-hour reperfusion in male adult mice.
Interventions: Various doses of salvinorin A, a highly selective and potent κ opioid receptor agonist, were administered intranasally 10 minutes after initiation of reperfusion. Norbinaltorphimine (2.5 mg/kg, IP) as a κ opioid receptor antagonist was administered in one group before administration of salvinorin A (50μg/kg) to investigate the specific role of κ opioid receptor.
Measurements And Main Results: Infarct volume, κ opioid receptor expression, and Evans blue extravasation in the brain, and neurobehavioral outcome were determined. Immunohistochemistry and western blot were performed to detect the activated caspase-3, interleukin-10, and tumor necrosis factor-α levels to investigate the role of apoptosis and inflammation. κ opioid receptor expression was elevated significantly in the ischemic penumbral area compared with that in the nonischemic area. Salvinorin A reduced infarct volume and improved neurologic deficits dose-dependently. Salvinorin A at the dose of 50 μg/kg reduced Evans blue extravasation, suggesting reduced impairment of the blood-brain barrier and decreased the expression of cleaved caspase-3, interleukin-10, and tumor necrosis factor-α in the penumbral areas. All these changes were blocked or alleviated by norbinaltorphimine.
Conclusions: κ opioid receptors were up-regulated and played a critical role in brain ischemia and reperfusion. κ opioid receptor activation could potentially protect the brain and improve neurologic outcome via blood-brain barrier protection, apoptosis reduction, and inflammation inhibition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5203937 | PMC |
http://dx.doi.org/10.1097/CCM.0000000000001959 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!