Background: Mycobacterium abscessus subsp. abscessus (MAB) is a highly drug resistant mycobacterium and the most common respiratory pathogen among the rapidly growing non-tuberculous mycobacteria. MAB is also one of the most deadly of the emerging cystic fibrosis (CF) pathogens requiring prolonged treatment with multiple antibiotics. In addition to its "mycobacterial" virulence genes, the genome of MAB harbours a large accessory genome, presumably acquired via lateral gene transfer including homologs shared with the CF pathogens Pseudomonas aeruginosa and Burkholderia cepacia. While multiple genome sequences are available there is little functional genomics data available for this important pathogen.
Results: We report here the first multi-omics approach to characterize the primary transcriptome, coding potential and potential regulatory regions of the MAB genome utilizing differential RNA sequencing (dRNA-seq), RNA-seq, Ribosome profiling and LC-MS proteomics. In addition we attempt to address the genomes contribution to the molecular systems that underlie MAB's adaptation and persistence in the human host through an examination of MABs transcriptional response to a number of clinically relevant conditions. These include hypoxia, exposure to sub-inhibitory concentrations of antibiotics and growth in an artificial sputum designed to mimic the conditions within the cystic fibrosis lung.
Conclusions: Our integrated map provides the first comprehensive view of the primary transcriptome of MAB and evidence for the translation of over one hundred new short open reading frames (sORFs). Our map will act as a resource for ongoing functional genomics characterization of MAB and our transcriptome data from clinically relevant stresses informs our understanding of MAB's adaptation to life in the CF lung. MAB's adaptation to growth in artificial CF sputum highlights shared metabolic strategies with other CF pathogens including P. aeruginosa and mirrors the transcriptional responses that lead to persistence in mycobacteria. These strategies include an increased reliance on amino acid metabolism, and fatty acid catabolism and highlights the relevance of the glyoxylate shunt to growth in the CF lung. Our data suggests that, similar to what is seen in chronically persisting P. aeruginosa, progression towards a biofilm mode of growth would play a more prominent role in a longer-term MAB infection. Finally, MAB's transcriptional response to antibiotics highlights the role of antibiotic modifications enzymes, active transport and the evolutionarily conserved WhiB7 driven antibiotic resistance regulon.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974804 | PMC |
http://dx.doi.org/10.1186/s12864-016-2868-y | DOI Listing |
Virulence
December 2025
Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea.
(Mab), a nontuberculous mycobacterium, is increasing in prevalence worldwide and causes treatment-refractory pulmonary diseases. However, how Mab rewires macrophage energy metabolism to facilitate its survival is poorly understood. We compared the metabolic profiles of murine bone marrow-derived macrophages (BMDMs) infected with smooth (S)- and rough (R)-type Mab using extracellular flux technology.
View Article and Find Full Text PDFMol Microbiol
October 2024
Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA.
Mycobacterium abscessus (Mab) is highly drug resistant, and understanding regulation of antibiotic resistance is critical to future antibiotic development. Regulatory mechanisms controlling Mab's β-lactamase (Bla) that mediates β-lactam resistance remain unknown. S.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2024
Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States.
() is an opportunistic pathogen afflicting individuals with underlying lung disease such as Cystic Fibrosis (CF) or immunodeficiencies. Current treatment strategies for infections are limited by its inherent antibiotic resistance and limited drug access to in its niches resulting in poor cure rates of 30-50%. ability to survive within macrophages, granulomas and the mucus laden airways of the CF lung requires adaptation via transcriptional remodeling to counteract stresses like hypoxia, increased levels of nitrate, nitrite, and reactive nitrogen intermediates.
View Article and Find Full Text PDFFront Cell Infect Microbiol
March 2023
Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States.
(), an emerging opportunistic pathogen, predominantly infects individuals with underlying pulmonary diseases such as cystic fibrosis (CF). Current treatment outcomes for infections are poor due to inherent antibiotic resistance and unique host interactions that promote phenotypic tolerance and hinder drug access. The hypoxic, mucus-laden airways in the CF lung and antimicrobial phagosome within macrophages represent hostile niches must overcome alterations in gene expression for survival.
View Article and Find Full Text PDFSensors (Basel)
February 2023
Department of Computer Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran.
In the Internet of Things (IoT), Low-Power Wide-Area Networks (LPWANs) are designed to provide low energy consumption while maintaining a long communications' range for End Devices (EDs). LoRa is a communication protocol that can cover a wide range with low energy consumption. To evaluate the efficiency of the LoRa Wide-Area Network (LoRaWAN), three criteria can be considered, namely, the Packet Delivery Rate (PDR), Energy Consumption (EC), and coverage area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!