Background: Transgenic mice are widely used for the study of basic visual function and retinal disease, including in psychophysical tests. Mice have a robust pupillary light reflex that controls the amount of light that enters the eye, and the attenuating effects of the pupil must be considered during such tests. Measurement of the size of pupils at various luminance levels requires that mice remain stable over prolonged periods of time; however, sedation of mice with anesthesia and/or manual restraint can influence the size of their pupils.
New Method: We present a system to measure the pupillary light response to steady lights of freely behaving mice using a custom-built, portable device that automatically acquires close-up images of their eyes. The device takes advantage of the intrinsic nature of mice to inspect objects of interest and can be used to measure pupillary responses in optomotor or operant behavior testing chambers.
Results: The size of the pupils in freely behaving mice decreased gradually with luminance from a maximal area in the dark of 3.8mm down to a minimum 0.14mm at 80 scotopic cd/m. The data was well fit with a Hill equation with Lo equal to 0.21cd/m and coefficient h=0.48.
Comparison With Existing Methods: These values agree with prior measurements of the pupillary response of unrestrained mice that use more laborious and time consuming approaches.
Conclusions: Our new method facilitates practical, straightforward and accurate measurements of pupillary responses made under the same experimental conditions as those used during psychophysical testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075502 | PMC |
http://dx.doi.org/10.1016/j.jneumeth.2016.08.001 | DOI Listing |
Biomed Opt Express
January 2025
Center for Optics, Photonics and Lasers, Department of Physics, Engineering Physics and Optics, Université Laval, 2375 Rue de la Terrasse, Québec, Québec G1V 0A6, Canada.
A miniature electrically tuneable liquid crystal component is used to steer light from -1° to +1° and then to inject into a simple tapered fiber. This allows the generation of various propagation modes, their leakage, and selective illumination of the surrounding medium at different depth levels without using mechanical movements nor deformation. The performance of the device is characterized in a reference fluorescence medium (Rhodamine 6G) as well as in a mouse brain (medullary reticular formation and mesencephalic locomotor regions) during in-vivo experiments as a proof of concept.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.
The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.
View Article and Find Full Text PDFCurr Protoc
January 2025
Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland.
In vivo calcium imaging in freely moving rats using miniscopes provides valuable information about the neural mechanisms of behavior in real time. A gradient index (GRIN) lens can be implanted in deep brain structures to relay activity from single neurons. While such procedures have been successful in mice, few reports provide detailed procedures for successful surgery and long-term imaging in rats, which are better suited for studying complex human behaviors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
East China Normal University, Dept. of Chemistry, Dongchuan Road 500, 200062, Shanghai, CHINA.
Monitoring dynamic neurochemical signals in the brain of free-moving animals remains great challenging in biocompatibility and direct implantation capability of current electrodes. Here we created a self-supporting polymer-based flexible microelectrode (rGPF) with sufficient bending stiffness for direct brain implantation without extra devices, but demonstrating low Young's modulus with remarkable biocompatibility and minimal position shifts. Meanwhile, screening by density functional theory (DFT) calculation, we designed and synthesized specific ligands targeting Mg2+ and Ca2+, and constructed Mg-E and Ca-E sensors with high selectivity, good reversibility, and fast response time, successfully monitoring Mg2+ and Ca2+ in vivo up to 90 days.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Neuro Electronics Res. Flanders (NERF), Heverlee, 3001, Belgium.
Neuropixels probes contain thousands of electrodes across one or more shanks and are sufficiently small to allow chronic recording of neural activity in freely behaving small animals. However, the joint increase in the number of electrodes and miniaturization of the probe package has led to a compromise in which groups of electrodes share a single read-out channel and only a fraction of the electrodes can be read out at any given time. Experimenters then face the challenge of selecting a subset of electrodes (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!