Onchocerciasis transmission in Ghana: the human blood index of sibling species of the Simulium damnosum complex.

Parasit Vectors

London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, School of Public Health, Faculty of Medicine (St Mary's campus), Imperial College London, Norfolk Place, London, W2 1PG, UK.

Published: August 2016

AI Article Synopsis

  • The study investigates the biting behavior of Simulium damnosum, a vector for onchocerciasis, to understand how often these blackflies feed on humans versus other animals, as indicated by the human blood index (HBI).
  • A significant number of blackflies were collected and analyzed, revealing that 75.7% of the blood meals were taken from humans, with certain species being more likely to feed on people.
  • The findings highlight the importance of identifying host preferences in controlling and modeling disease transmission, particularly in diverse environments like Ghana.

Article Abstract

Background: Vector-biting behaviour is important for vector-borne disease (VBD) epidemiology. The proportion of blood meals taken on humans (the human blood index, HBI), is a component of the biting rate per vector on humans in VBD transmission models. Humans are the definitive host of Onchocerca volvulus, but the simuliid vectors feed on a range of animals and HBI is a key indicator of the potential for human onchocerciasis transmission. Ghana has a diversity of Simulium damnosum complex members, which are likely to vary in their HBIs, an important consideration for parameterization of onchocerciasis control and elimination models.

Methods: Host-seeking and ovipositing S. damnosum (sensu lato) (s.l.) were collected from seven villages in four Ghanaian regions. Taxa were morphologically and molecularly identified. Blood meals from individually stored blackfly abdomens were used for DNA profiling, to identify previous host choice. Household, domestic animal, wild mammal and bird surveys were performed to estimate the density and diversity of potential blood hosts of blackflies.

Results: A total of 11,107 abdomens of simuliid females (which would have obtained blood meal(s) previously) were tested, with blood meals successfully amplified in 3,772 (34 %). A single-host species was identified in 2,857 (75.7 %) of the blood meals, of which 2,162 (75.7 %) were human. Simulium soubrense Beffa form, S. squamosum C and S. sanctipauli Pra form were the most anthropophagic (HBI = 0.92, 0.86 and 0.70, respectively); S. squamosum E, S. yahense and S. damnosum (sensu stricto) (s.s.)/S. sirbanum were the most zoophagic (HBI = 0.44, 0.53 and 0.63, respectively). The degree of anthropophagy decreased (but not statistically significantly) with increasing ratio of non-human/human blood hosts. Vector to human ratios ranged from 139 to 1,198 blackflies/person.

Conclusions: DNA profiling can successfully identify blood meals from host-seeking and ovipositing blackflies. Host choice varies according to sibling species, season and capture site/method. There was no evidence that HBI is vector and/or host density dependent. Transmission breakpoints will vary among locations due to differing cytospecies compositions and vector abundances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975878PMC
http://dx.doi.org/10.1186/s13071-016-1703-2DOI Listing

Publication Analysis

Top Keywords

blood meals
24
blood
10
onchocerciasis transmission
8
transmission ghana
8
human blood
8
sibling species
8
simulium damnosum
8
damnosum complex
8
dna profiling
8
profiling identify
8

Similar Publications

A conceptual mechanistic model of amino acid fluxes in the small intestine, taking the example of pig.

Animal

December 2024

PEGASE, INRAE, Institut Agro, 35590 Saint Gilles, France. Electronic address:

During digestion, almost 50% of absorbed essential amino acids (AAs) are metabolised by intestinal tissue, thus not appearing directly in the portal vein. This value, which is referred to as first-pass metabolism, seems high in relation to the overall efficiency of AA use considered in growth models. Experimental studies of first-pass metabolism are complicated due to the presence of numerous metabolic fluxes in the intestine and to the dynamics of digestion and absorption.

View Article and Find Full Text PDF

Limited research has explored histamine intolerance from the perspective of primary caregivers. Our objective was to develop a practical symptom profile from the standpoint of general practice. We also aimed to gather data on the frequency and timing of disease progression and to establish a staging system.

View Article and Find Full Text PDF

Comorbidity of Histamine Intolerance and Polyvalent Allergy: A Case Report and Literature Review.

Healthcare (Basel)

January 2025

Department of Prevention of Environmental Hazards Allergology and Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland.

Histamine intolerance is becoming a critical medical problem across numerous clinical specialties, due to the absence of a standardized diagnostic and therapeutic strategy to manage patients with a suspicion of or diagnosis of this condition. Histamine intolerance is a type of non-immune food hypersensitivity, characterized by heterogenous etiologies and a very broad range of symptoms. The condition is the result of an imbalance between the amount of histamine accumulated within the body and the body's systemic ability to degrade it.

View Article and Find Full Text PDF

Meta-analyses of Culex blood-meals indicates strong regional effect on feeding patterns.

PLoS Negl Trop Dis

January 2025

Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom.

Understanding host utilization by mosquito vectors is essential to assess the risk of vector-borne diseases. Many studies have investigated the feeding patterns of Culex mosquitoes by molecular analysis of blood-meals from field collected mosquitoes. However, these individual small-scale studies only provide a limited understanding of the complex host-vector interactions when considered in isolation.

View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) is a leading cause of premature morbidity and mortality globally and affects more than 100 million people in the world's most populous country, India. Nutrition is a critical and evidence-based component of effective blood glucose control and most dietary advice emphasizes carbohydrate and calorie reduction. Emerging global evidence demonstrates marked interindividual differences in postprandial glucose response (PPGR) although no such data exists in India and previous studies have primarily evaluated PPGR variation in individuals without diabetes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!