The mushroom cultivation industry produces a huge amount of spent mushroom compost (SMC), a wide world agricultural organic waste which causes serious environmental problems. However, this cheap organic waste could be useful in the remediation of contaminated soils. The aim of this work was to assess the potential of SMC in combination with the native shrub Atriplex halimus, to phytoremediate two mine soils contaminated with Cd, Pb and Cu. Firstly, to minimize metal availability in the soil, the optimal doses of SMC were determined. Secondly, a phytoremediation assay in greenhouse conditions was carried out to test the effects of A. halimus in combination with SMC at different doses. The results showed the ability of SMC to reduce soil acidity, the mobility of the metals and the enhancement of A. halimus growth. SMC promoted metal immobilization in the root of A. halimus and decreased the translocation from the roots to the shoots. The combination of SMC amendment and A. halimus produced phytostabilization of the metals in the mine soils assayed. In conclusion, SMC represents an adequate organic solid waste which in combination with A. halimus can reduce the adverse impact caused by the high mobility of metals in acid mine soils.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2016.1217938DOI Listing

Publication Analysis

Top Keywords

mine soils
16
spent mushroom
8
mushroom compost
8
atriplex halimus
8
halimus phytoremediate
8
smc
8
organic waste
8
combination smc
8
mobility metals
8
halimus
7

Similar Publications

The ecology of watersheds plays an important role in regulating regional climate and human activities. The sediment-soil system in the middle and lower reaches of the Yellow River Basin (Henan section) was explored. The spatial distribution characteristics of heavy metals (HMs) showed that tributaries, which are affected by anthropogenic activities, contain higher concentrations of HMs than the main channel.

View Article and Find Full Text PDF

Revising the coal mining CH emission factor based on multiple inventories and atmospheric inversion approach at one of the world's largest coal production areas: Shanxi province, China.

Sci Total Environ

January 2025

College of Ecology and Environment, Joint Center for sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Yale-NUIST Center on Atmospheric Environment, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China. Electronic address:

Methane (CH) emissions from the coal industry represent a substantial portion of anthropogenic CH emissions from energy-related activities. China ranks as the world's largest coal producer, where Shanxi Province is one of its major coal production regions and accounts for 20.7 % of the national total coal production.

View Article and Find Full Text PDF

Recruitment of copiotrophic and autotrophic bacteria by hyperaccumulators enhances nutrient cycling to reclaim degraded soils at abandoned rare earth elements mining sites.

J Hazard Mater

January 2025

Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, Fujian 350117, China. Electronic address:

Hyperaccumulators harbor potentials for remediating rare earth elements (REEs)-contaminated soils. However, how they thrive in low-nutrient abandoned REEs mining sites is poorly understood. Three ferns (REEs-hyperaccumulators Dicranopteris pedata and Blechnum orientale, and non-hyperaccumulator Pteris vittata) along with their rhizosphere soils were collected to answer this question by comparing differences in soil nutrient levels, soil and plant REEs concentrations, and bacterial diversity, composition, and functions.

View Article and Find Full Text PDF

The acid mine drainage (AMD) is characterized by its highly acidic nature and elevated concentrations of metal ions, thereby exerting significant impacts on both human health and the environment. This study employed a dispersed alkaline substrate (DAS) consisting of thermal activation magnesite and pine shavings for the treatment of AMD. The investigation focused on determining the optimal thermal activation conditions of magnesite, evaluating the effectiveness of the DAS in regulating acidity and removing metal ions from AMD, identifying critical factors influencing treatment efficiency, and conducting toxicity assessment on the effluent.

View Article and Find Full Text PDF

The accumulation pattern of some inorganic pollutants in quarry sites around Ogun State was modeled using a Fuzzy comprehensive assessment (FCA). Potentially toxic elements (PTEs) and naturally occurring radionuclides materials (NORMs) were assessed from soil samples collected from ten quarry sites in three districts (Odeda, Ajebo, and Ijebu Ode) in Ogun State. Three (3) NORMs ( K, U, Th) were assessed using gamma spectrometer with a NaI detector while ten (10) PTEs (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined by digestion method using Inductively coupled plasma optical emission spectrophotometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!