Variation of DNA Methylome of Zebrafish Cells under Cold Pressure.

PLoS One

Key Laboratory of Aquacultural Resources and Utilization, Ministry of Education, College of Fishery and Life Science, Shanghai Ocean University, Shanghai, China.

Published: July 2017

DNA methylation is an essential epigenetic mechanism involved in multiple biological processes. However, the relationship between DNA methylation and cold acclimation remains poorly understood. In this study, Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq) was performed to reveal a genome-wide methylation profile of zebrafish (Danio rerio) embryonic fibroblast cells (ZF4) and its variation under cold pressure. MeDIP-seq assay was conducted with ZF4 cells cultured at appropriate temperature of 28°C and at low temperature of 18°C for 5 (short-term) and 30 (long-term) days, respectively. Our data showed that DNA methylation level of whole genome increased after a short-term cold exposure and decreased after a long-term cold exposure. It is interesting that metabolism of folate pathway is significantly hypomethylated after short-term cold exposure, which is consistent with the increased DNA methylation level. 21% of methylation peaks were significantly altered after cold treatment. About 8% of altered DNA methylation peaks are located in promoter regions, while the majority of them are located in non-coding regions. Methylation of genes involved in multiple cold responsive biological processes were significantly affected, such as anti-oxidant system, apoptosis, development, chromatin modifying and immune system suggesting that those processes are responsive to cold stress through regulation of DNA methylation. Our data indicate the involvement of DNA methylation in cellular response to cold pressure, and put a new insight into the genome-wide epigenetic regulation under cold pressure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4975392PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0160358PLOS

Publication Analysis

Top Keywords

dna methylation
28
cold pressure
16
cold exposure
12
cold
11
methylation
10
dna
8
involved multiple
8
biological processes
8
methylation level
8
short-term cold
8

Similar Publications

Identification of DNA methylation signatures in follicular-patterned thyroid tumors.

Pathol Res Pract

December 2024

Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Precision Pathology of Neoplasia Research Group, Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

Background And Aims: Follicular-patterned thyroid tumors (FPTTs) are frequently encountered in thyroid pathology, encompassing follicular adenoma (FA), follicular thyroid carcinoma (FTC), noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP), and follicular variant of papillary thyroid carcinoma (fvPTC). Recently, a distinct entity termed differentiated high-grade thyroid carcinoma has been described by the 5th edition of the WHO classification of the thyroid tumors, categorized as either high-grade fvPTC, high-grade FTC or high-grade oncocytic carcinoma of the thyroid (OCA). Accurate differentiation among these lesions, particular between the benign (FA), borderline (NIFTP) and malignant neoplasms (FTC and fvPTC), remains a challenge in both histopathological and cytological diagnoses.

View Article and Find Full Text PDF

The early symptoms of hepatocellular carcinoma patients are often subtle and easily overlooked. By the time patients exhibit noticeable symptoms, the disease has typically progressed to middle or late stages, missing optimal treatment opportunities. Therefore, discovering biomarkers is essential for elucidating their functions for the early diagnosis and prevention.

View Article and Find Full Text PDF

Background: Evidence indicates a negative link between glucosamine and age-related cognitive decline and sarcopenia. However, the causal relationship remains uncertain. This study aims to verify whether glucosamine is causally associated with cognitive function and sarcopenia.

View Article and Find Full Text PDF

DNA methylation age (DNAmAge) surpasses chronological age in its ability to predict age-related morbidities and mortality. This study analyzed data from 287 middle-aged twins in the Louisville Twin Study (mean age 51.9 years ± 7.

View Article and Find Full Text PDF

Structural variants (SVs) drive gene expression in the human brain and are causative of many neurological conditions. However, most existing genetic studies have been based on short-read sequencing methods, which capture fewer than half of the SVs present in any one individual. Long-read sequencing (LRS) enhances our ability to detect disease-associated and functionally relevant structural variants (SVs); however, its application in large-scale genomic studies has been limited by challenges in sample preparation and high costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!